The active leaderboard data (leaderboards currently being attempted, which get displayed on screen) is now tracked. When a leaderboard is started its value is added to a vector (sorted by start frame). There are a separate set of client events specifically to handle leaderboard trackers, that are used to populate and manage this vector. The top portion of this vector (by RetroAchievement standards, the first four items) is exposed to be displayed on screen.
Also deletes the old runtime-based Achievement Triggered event from the old handler, and the methods used by it to publish to the server and reactivate/deactivate achievements in the runtime.
This change was primarily made to refactor the badge fetching to use the client instead of the runtime, but in the process I also refactored the code to cut down on complexity and duplication. Now the FetchBadge method is passed a function that generates the badge name; this is used to ensure that once the badge is loaded that it is still the desired badge to avoid race conditions.
HashGame has become LoadGame, similar structure with the file loaders but using the client instead. LoadGameCallback has been created to handle the results. The old LoadGameSync has been deleted as have
several hash and load methods that it called.
Deletes AchievementManager::Login, renames LoginAsync to Login, and replaces the one synchronous call in the AchievementSettingsWidget with the async call. There is a minor usability regression in that the UI currently does not notify the user when a login has failed; this will be addressed in a later change (possibly in a different PR).
On Windows 11, when playing windowed in a separate window/widget from the main emulator window, we don't want the window to have rounded corners, as it prevents the corner pixels from being visible
Also make the `Decrypt` method private.
As far as I can tell, the only motivation for exposing the `SetBytes`
and `Reset` methods is to allow `CBoot::SetupWiiMemory` to use the same
`SettingsHandler` instance to read settings data and then write it back.
It seems cleaner to just use two separate instances, and require a given
`SettingsHandler` instance to be used for either writing data to a
buffer or reading data from a buffer, but not both.
A natural next step is to split the `SettingsHandler` class into two
classes, one for writing data and one for reading data. I've deferred
that change for a future PR.
This is a JitArm64 version of 219610d8a0e5a2c12d074314c6f2e62a4b43d7e4.
Due to limitations on how far you can jump with a single AArch64 branch
instruction, going above the former limit of 128 MiB of code (counting
nearcode and farcode combined) requires a bit of restructuring. With the
restructuring in place, the limit now is 256 MiB. See the new large
comment in Jit.h for a description of the new memory layout.