To do this, I had to decouple framebuffer fetch from shader blending. We need to be able to access framebuffer fetch input when using shader logic ops.
Being able to preserve the address register is useful for the
next commit, and W0 is the address register used for loads. Saving
the address register used for stores, W1, was already supported.
If a host register has been newly allocated for the destination
guest register, and the load triggers an exception, we must make
sure to not write the old value in the host register into ppcState.
This commit achieves this by not marking the register as dirty
until after the load is done.
Removed useless locks to DeviceContainer::m_devices_mutex, as they were all already protected by m_devices_population_mutex.
We have no interest in blocking other threads that were potentially reading devices at the same time so this seems fine.
This simplifies the code, and I've adjusted a few comments which mentioned possible deadlock that should now be totally gone.
The deadlock could have happen if a thread directly called EmulatedController::UpdateReferences(), while another another thread also reached EmulatedController::UpdateReferences() within a call to ControllerInterface::UpdateDevices(), as the mentioned function locked both the DeviceContainer::m_devices_mutex and s_get_state_mutex at the same time.
The deadlock was frequent on game emulation startup on Android, due to the UpdateReferences() call in InputConfig::LoadConfig() and the UI thread triggering calls to ControllerInterface::UpdateDevices().
It could also have happened on Desktop if a user pressed "Refresh Devices" manually in the UI while the input config was loading.
Also brought some UpdateReferences() comments and thread safety fixes from https://github.com/dolphin-emu/dolphin/pull/9489
This commit changes the default value of Fast Texture Sampling to true, and also moves the setting that controls it to the experimental section of the advanced tab. This is its own commit so that it can be easily reverted when we want to default to Manual Texture Sampling.
Co-authored-by: JosJuice <josjuice@gmail.com>
Specifically, when using Manual Texture Sampling, if textures sizes don't match the size the game specifies, things previously broke. That can happen with custom textures, and also with scaled EFB copies at non-native IRs. It breaks most obviously by not scaling the texture coordinates (so only part of the texture shows up), but the hardware wrapping functionality also assumes texture sizes are a power of 2 (or else it will behave weirdly in a way that matches how hardware behaves weirdly). The fix is to provide alternative texture wrapping logic when custom texture sizes are possible.
Note that both GLSL and HLSL provide a fwidth (fragment width) function defined as `fwidth(p) = abs(dFdx(p)) + abs(dFdy(p))`. However, it's easy enough to implement this ourselves (and it makes the code a bit more obvious).
The benefit to exposing this over the raw BP state is that adjustments Dolphin makes, such as LOD biases from arbitrary mipmap detection, will work properly.