Since ccf92a3e56764d6378c436a8040519a5bffc3372, recording fifologs multiple times after launching dolphin caused all initial state to not be saved (the initial contents of bpmem, cpmem, etc were all zeroed out). For some games, this was not noticeable, as most registers were set each frame, but for others, this resulted in completely broken fifologs. (Note that recording fifologs also required 05181f6b88fd8ee671113bcafb81c65027f911a4 and 9e0755a5983d8d9a277cea284534fb32a545f270 to be cherry-picked due to other, since fixed, regressions.)
This was because previously, `Renderer::CheckFifoRecording` was called every frame, but ccf92a3e56764d6378c436a8040519a5bffc3372 changed it into a callback (`m_end_of_frame_event`) that was removed when recording ended. Thus, before, `OpcodeDecoder::g_record_fifo_data = IsRecording()` was called when `IsRecording()` returned false, but after that commit `g_record_fifo_data` never got changed back to false, so the check for `was_recording` only ever passed on the first fifolog recorded (even after stopping and starting a game).
There may still be another issue lurking, as I'm not sure if all broken fifologs were caused by recording multiple fifologs (for instance, on https://bugs.dolphin-emu.org/issues/13377, only one fifolog was initially uploaded, but it was affected by an issue with the same symptoms as this).
Instructions referencing registers r8-r15 take an additional byte to
encode. `reg_downcount` may be assigned to one of these registers, so it
is a small size win to store the downcount value in `RSCRATCH` first.
Before:
33 D2 xor edx,edx
44 8B 6D 64 mov r13d,dword ptr [rbp+64h]
45 85 ED test r13d,r13d
7E 30 jle 0000023546B43F6D
44 8B B5 D4 02 00 00 mov r14d,dword ptr [rbp+2D4h]
41 8B C5 mov eax,r13d
BF 07 00 00 00 mov edi,7
F7 F7 div eax,edi
After:
33 D2 xor edx,edx
8B 45 64 mov eax,dword ptr [rbp+64h]
85 C0 test eax,eax
7E 30 jle 000001AFBBAE359D
44 8B B5 D4 02 00 00 mov r14d,dword ptr [rbp+2D4h]
44 8B E8 mov r13d,eax
BF 07 00 00 00 mov edi,7
F7 F7 div eax,edi
This value is used in a multiplication. The result of this
multiplication is then subtracted from m_base. By negating m_dec, we are
free to use an addition instead.
On x64, this saves an instruction.
Split the "welcome" messages letting players know achievements are active into a separate method that gets called (currently) after a number of frames to ensure that the emulator has started properly and has somewhere to display the messages.
A new tab is added to the Achievements dialog to chart out the leaderboards in a table. Each row of the table contains the leaderboard information and up to four relevant entries, varying based on how many entries are in the leaderboard, whether or not the player has a submitted score, and where in the leaderboard the player's score is.
FetchBoardInfo is called (via the work queue asynchronously) on a leaderboard every time it is activated or submitted to. It makes two calls to the RetroAchievements API for fetching leaderboard info, one that requests the top four entries in the leaderboard and another that requests the player's entry, the two entries above the player and the two entries below. All of these are inserted into a single map (resolving any overlaps) so the result can be exposed to the UI.
The leaderboard map created here contains information useful to displaying leaderboard stats in the Achievement dialog, including each leaderboard's name and description and a partial list of entries for display. The entire map is exposed to the UI in a single call for simplicity.
Both of these functions access `m_game_data` and don't lock themselves, so they must be called in a way that guarantees that `m_game_data` is not modified during the call.
Scope issue in the event callback from `rc_runtime_do_frame()`. The pointer points to a variable on the stack from inside `rc_runtime_do_frame()`, so that's a race condition between the thread calling `rc_runtime_do_frame()` and the event queue thread.