Instead of using an out-reference, we can modernize these to return the
std::string directly. While we're at it, also remove the unused name
parameter.
This adds a base class that is used to replace the concrete instance of
the x64 JIT pointer within DSPCore. This fully removes the direct use
(read: non-ifdefed) usage of x86-64-specifics within the main DSP code.
Said base can also be used for creating JITs for other architectures,
such as AArch64, etc.
This is one of the last things that needed to be done in order to
finally separate the x86-64-specific code from the rest of the common
DSP code. This splits the tables up similar to how it's currently done
for the PowerPC CPU tables.
Now, the tables are split up and within their own relevant source files,
so the main table within the common DSP code acts as the "info" table
that provides specifics about a particular instruction, while the other
tables contain the actual instruction.
With this out of the way, all that's left is to make a general base for
the emitters and we can then replace the x64 JIT pointer in DSPCore with
it, getting all x64 out of the common code once and for all.
While shuffling all the code around, the removal of the DSPEmitter
includes in some places uncovered indirect inclusions, so this also
fixes those as well.
Despite both being documented as read-only registers, only one of them
is truly read-only. An mtspr to HID1 will steamroll bits 0-4 with
bits 0-4 of whatever value is currently in the source register, the rest
of the bits are not modified as bits 5-31 are considered reserved, so
these ignore writes to them.
PVR on the other hand, is truly a read-only register. Attempts to write
to it don't modify the value within it, so we model this behavior.
This makes it much more straightforward to access WiimoteDevice
instances and also keeps the implementation details of accessing those
instances in one spot.
Given as all external accesses to the WiimoteDevice instances go through
this function, we can make the other two private.
Using reinterpret_cast (or a C-styled equivalent) to reinterpret
integers as floating-point values and vice-versa invokes undefined
behavior. Instead, use BitCast, which does this in a well-defined
manner.
These can be moved into the RegisterColumn constructor, which avoids
potential allocations in the case a std::function would otherwise need
to allocate to hold all of it's captured data.
Also tidy up the inclusion order while we're at it.
Previously the class was intermixing m_ prefixed variables and
non-prefixed ones, which can be misleading. Instead, we make the
prefixing consistent across the board.
Selecting Dummy or Memory Card would pass wrong values to EXI::ChangeDevice and not work as expected
Changing path had no effect until device was changed as it didn't call EXI::ChangeDevice at all