This makes it much more straightforward to access WiimoteDevice
instances and also keeps the implementation details of accessing those
instances in one spot.
Given as all external accesses to the WiimoteDevice instances go through
this function, we can make the other two private.
Using reinterpret_cast (or a C-styled equivalent) to reinterpret
integers as floating-point values and vice-versa invokes undefined
behavior. Instead, use BitCast, which does this in a well-defined
manner.
These can be moved into the RegisterColumn constructor, which avoids
potential allocations in the case a std::function would otherwise need
to allocate to hold all of it's captured data.
Also tidy up the inclusion order while we're at it.
Previously the class was intermixing m_ prefixed variables and
non-prefixed ones, which can be misleading. Instead, we make the
prefixing consistent across the board.
Selecting Dummy or Memory Card would pass wrong values to EXI::ChangeDevice and not work as expected
Changing path had no effect until device was changed as it didn't call EXI::ChangeDevice at all
Makes the values strongly-typed and gets more identifiers out of the
global namespace.
We are forced to use anything that is not "None" to mean none, because
X11 is garbage in that it has:
\#define None 0L
Because clearly no one else will ever want to use that identifier for
anything in their own code (and is why you should prefix literally
any and all preprocessor macros you expose to library users in public
headers).
Makes the enum values strongly-typed and prevents the identifiers from
polluting the PowerPC namespace. This also cleans up the parameters of
some functions where we were accepting an ambiguous int type and
expecting the correct values to be passed in.
Now those parameters accept a PowerPC::CPUCore type only, making it
immediately obvious which values should be passed in. It also turns out
we were storing these core types into other structures as plain ints,
which have also been corrected.
As this type is used directly with the configuration code, we need to
provide our own overloaded insertion (<<) and extraction (>>) operators
in order to make it compatible with it. These are fairly trivial to
implement, so there's no issue here.
A minor adjustment to TryParse() was required, as our generic function
was doing the following:
N tmp = 0;
which is problematic, as custom types may not be able to have that
assignment performed (e.g. strongly-typed enums), so we change this to:
N tmp;
which is sufficient, as the value is attempted to be initialized
immediately under that statement.
This changes the identifier to represent the x86-64 DSP emitter. If any
other JITs for the DSP are added in the future, they all can't use the
same generic identifier.
In cases where we just want a random value for a primitive arithmetic
type, we can wrap this in a template to allow convenient direct
assignment instead of keeping declaration and initialization separate
(making it more difficult to use values uninitialized). This also allows
the use of Common::Random with functions such as std::generate, making
it more flexible in how random values can be generated.
This is only ever used internally. Also change the std::string name over
to a const char*, so that we don't need to potentially allocate anything
on the heap at immediate runtime.