You will see an empty gc pad settings screen until you open any other
settings screen and change something, at that moment the Dolphin.ini will
be created and the gc pad settings will be loaded successfully the next
time you open the screen.
This fixes the bug by putting the default gc pad settings section even if
the Dolphin.ini file doesn't exist
This solves the following issues:
1. If user uninstall Dolphin and install it again the resources will
not be copied unless the user manually clear the app cache because we
are enabling the allowBackup flag in the manifest which will make the app
restore the settings saved in the shared prefernces including the flag
assetsCopied. This PR always copy the files everytime you open Dolphin.
2. If the AssetCopyService took long time and you tried to open the settings
screen or start a game the behaviour was not expected or the emulator will
crash, this PR make sure that whatever we add to the DirectoryInitializationService
or how long it will take will still work as expected by blocking both
the settings screen and the emulaion screen to wait untill all resources
needed are copied.
3. Better communication between the DirectoryInitializationService and the
UI screens using brocast messages.
This only works if GCPadNew.ini and Dolphin.ini files are not already in the dolphin config folder. Any advice would be helpful. I'd really like to tackle the UI and wiring for deadzones, radius, etc.
This has no effect now, as we've never bumped the database version.
Instead, it adds future proofing, and makes moving between a future
version with a bump and master clean.
Now that all inputs are corrected to zero-centered, we can use getFlat()
to ignore movements that are just noise.
This eliminates a lot of drift when the controller is at rest, notably
on the character select screen in Melee.
Android reports the same physical axis multiple times for analog
triggers, and this handles this case.
There are also some controllers with broken mappings (eg the analog
triggers on a PS4 DualShock 4). These axis don't center correctly.
There are also some controllers (again, the PS4) that send both a button
press and an axis movement. This ignores the buttons so we can use the
analog axis. Otherwise, since the button comes before the axis moves
far we would always take the button.
This reverts commit 1fc910b3ea9eafcc3cc5132bdfc51731ba5fa9fd,
replacing the old INI setting EFBScale with a new INI setting
called InternalResolution, which has a simpler mapping:
| EFBScale | InternalResolution
----------------- | -------------------- | --------------------
Auto (fractional) | 0 |
Auto (integral) | 1 | 0
1x | 2 | 1
1.5x | 3 |
2x | 4 | 2
2.5x | 5 |
3x | 6 | 3
4x | 7 | 4
5x | 8 | 5
6x | 9 | 6
All the fractional IRs were removed in f090a943.
Emulation needs to be running when the surface is destroyed, but we want
to pause in onStop. So call the surfaceDestroyed callback, as this
accomplished both.
The source Views don't need the transition name. We could get the name
from the sharedView via getTransitionName, but since the TV
ImageCardView isn't inflated in XML it would be to be manually set.
I'm not sure if that would be any cleaner than this.
called.
The user will get a brief system popup tutorial the first time it's
used, so we don't need to show them the menu every time. Once they
enable it by pulling down, hide again after 3s.
Move the parameter extraction earlier on in onCreate. Mostly this moves
setting sIsGameCubeGame to before setContentView, which means
EmulationFragment will always see it in a consistent state. Previously,
there was a race, which mean the controller overlay would randomly be
Wii controls for a GameCube game (since the default is false).
Use the correct support version of things, ActivityOptionsCompat and
transitions
Rename static var mIsGameCubeGame to sIsGameCubeGame. s is static, m is
member.
Make the MenuFragment added and removed by fragment transactions only,
instead of being initially present in the XML. This fixes a glitch where
it doesn't animate correctly the first time it's used.
The Activity is responsible for just its views and menus and such. It
signals the Fragment via setGamePath, StartEmulation and StopEmulation.
The Fragment manages the actual emulation lifecycle. It is solely
responsible for calling the NativeLibrary lifecycle methods.
With this lifecycle simplification, the NativeLibrary no longer needs to
kill the Activity. It happens normally now.
This simplifies a lot of things, live handling rotation.
Without this View, the emulation SurfaceView acts like it has the
highest Z-value, blocking any other View. This includes the menu
fragments and the screenshot ImageView.
This makes it clear that the Activity is being cleared and removes null as
a valid param. This improves readability (and logging slightly).
Fix spacing between [Tag] and message. This matches the rest of the log
messages.
In the support lib, the code comes from the SDK, not the device like the
framework version. This means we're shipping a more recent and less buggy
version.
It's also a good idea to keep the entire project on one version. We have a bit
of a mix now. I think some of the Fragment animation issues were because of
this mixing.
For the leanback activities, AppCompatActivity requires AppCompat themes, which
they don't ship for Theme.Leanback. So use FragmentActivity instead (that's the
parent of AppCompatActivity, but still in the support library). For passed
around Activities, use FragmentActivity to work with both.
Other than what action they send back to
EmulationActivity.handleMenuAction(), they are the same.
Change the menu-handling logic in EmulationActivity to keep track of a
boolean for whether the submenu is visible, rather than keeping the
fragment tag. There's only one fragment visible, so this makes more
sense.
Prefixing everything with a constant packagename is not needed for
internal keys, and just adds complexity.
Rename ARGUMENT_ prefix to ARG_ to match (most) of the rest of the
codebase.
Restrict visiblity of above as much as possible.