// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Setup.h" #include "Thread.h" // ----------------------------------------- #ifdef SETUP_TIMER_WAITING // ----------------- #include #include "ConsoleWindow.h" EventCallBack FunctionPointer[10]; #endif // ------------------------ #define THREAD_DEBUG 1 namespace Common { #ifdef _WIN32 void InitThreading() { // Nothing to do in Win32 build. } CriticalSection::CriticalSection(int spincount) { if (spincount) { InitializeCriticalSectionAndSpinCount(§ion, spincount); } else { InitializeCriticalSection(§ion); } } CriticalSection::~CriticalSection() { DeleteCriticalSection(§ion); } void CriticalSection::Enter() { EnterCriticalSection(§ion); } bool CriticalSection::TryEnter() { return TryEnterCriticalSection(§ion) ? true : false; } void CriticalSection::Leave() { LeaveCriticalSection(§ion); } Thread::Thread(ThreadFunc function, void* arg) : m_hThread(NULL), m_threadId(0) { m_hThread = CreateThread( 0, // Security attributes 0, // Stack size function, arg, 0, &m_threadId); } Thread::~Thread() { WaitForDeath(); } void Thread::WaitForDeath() { if (m_hThread) { WaitForSingleObject(m_hThread, INFINITE); CloseHandle(m_hThread); m_hThread = NULL; } } void Thread::SetAffinity(int mask) { SetThreadAffinityMask(m_hThread, mask); } void Thread::SetCurrentThreadAffinity(int mask) { SetThreadAffinityMask(GetCurrentThread(), mask); } ////////////////////////////////////////////////////////////////////////////////////////// // Regular same thread loop based waiting // ŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻ Event::Event() { m_hEvent = 0; #ifdef SETUP_TIMER_WAITING DoneWaiting = false; StartWait = false; hTimer = NULL; hTimerQueue = NULL; #endif } void Event::Init() { m_hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); } void Event::Shutdown() { CloseHandle(m_hEvent); m_hEvent = 0; } void Event::Set() { SetEvent(m_hEvent); } void Event::Wait() { WaitForSingleObject(m_hEvent, INFINITE); } inline HRESULT MsgWaitForSingleObject(HANDLE handle, DWORD timeout) { return MsgWaitForMultipleObjects(1, &handle, FALSE, timeout, 0); } void Event::MsgWait() { // Adapted from MSDN example http://msdn.microsoft.com/en-us/library/ms687060.aspx while (true) { DWORD result; MSG msg; // Read all of the messages in this next loop, // removing each message as we read it. while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { // If it is a quit message, exit. if (msg.message == WM_QUIT) return; // Otherwise, dispatch the message. DispatchMessage(&msg); } // Wait for any message sent or posted to this queue // or for one of the passed handles be set to signaled. result = MsgWaitForSingleObject(m_hEvent, THREAD_WAIT_TIMEOUT); // The result tells us the type of event we have. if (result == (WAIT_OBJECT_0 + 1)) { // New messages have arrived. // Continue to the top of the always while loop to // dispatch them and resume waiting. continue; } else { // result == WAIT_OBJECT_0 // Our event got signaled return; } } } ///////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// /* Separate thread timer based waiting, instead of same thread loop waiting. The downside with this is that it's less convenient to use because we can't stall any threads with a loop. The positive is that we don't cause these incredibly annoying WaitForEternity() hangings. */ // ŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻ #ifdef SETUP_TIMER_WAITING /* I could not figure out how to place this in the class to, CreateTimerQueueTimer() would complain about some kind of type casting, anyone have any ideas about how to do it? */ VOID CALLBACK TimerRoutine(PVOID lpParam, BOOLEAN TimerOrWaitFired) { if (lpParam == NULL) { Console::Print("TimerRoutine lpParam is NULL\n"); } else { // lpParam points to the argument; in this case it is an int //Console::Print("Timer[%i] will call back\n", *(int*)lpParam); } // Call back int Id = *(int*)lpParam; if (FunctionPointer[Id]) FunctionPointer[Id](); } // Create a timer that will call back to the calling function bool Event::TimerWait(EventCallBack WaitCB, int _Id, bool OptCondition) { Id = _Id; //Console::Print("TimerWait[%i]: %i %i %i\n", Id, StartWait, DoneWaiting, OptCondition); FunctionPointer[Id] = WaitCB; // This means we are done waiting, so we wont call back again, and we also reset the variables for this Event if (DoneWaiting && OptCondition) { StartWait = false; DoneWaiting = false; FunctionPointer[Id] = NULL; // Delete all timers in the timer queue. if (!DeleteTimerQueue(hTimerQueue)) Console::Print("DeleteTimerQueue failed (%d)\n", GetLastError()); hTimer = NULL; hTimerQueue = NULL; return true; } // Else start a new callback timer StartWait = true; // Create the timer queue if needed if (!hTimerQueue) { hTimerQueue = CreateTimerQueue(); if (NULL == hTimerQueue) { Console::Print("CreateTimerQueue failed (%d)\n", GetLastError()); return false; } } // Set a timer to call the timer routine in 10 seconds. if (!CreateTimerQueueTimer( &hTimer, hTimerQueue, (WAITORTIMERCALLBACK)TimerRoutine, &Id , 10, 0, 0)) { Console::Print("CreateTimerQueueTimer failed (%d)\n", GetLastError()); return false; } return false; } // Check if we are done or not bool Event::DoneWait() { if (StartWait && DoneWaiting) return true; else return false; } // Tells the timer that we are done waiting void Event::SetTimer() { // We can not be done before we have started waiting if (StartWait) DoneWaiting = true; } #endif //////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// // Supporting functions // ŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻ void SleepCurrentThread(int ms) { Sleep(ms); } typedef struct tagTHREADNAME_INFO { DWORD dwType; // must be 0x1000 LPCSTR szName; // pointer to name (in user addr space) DWORD dwThreadID; // thread ID (-1=caller thread) DWORD dwFlags; // reserved for future use, must be zero } THREADNAME_INFO; // Usage: SetThreadName (-1, "MainThread"); // // Sets the debugger-visible name of the current thread. // Uses undocumented (actually, it is now documented) trick. // http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsdebug/html/vxtsksettingthreadname.asp void SetCurrentThreadName(const TCHAR* szThreadName) { THREADNAME_INFO info; info.dwType = 0x1000; #ifdef UNICODE //TODO: Find the proper way to do this. char tname[256]; unsigned int i; for (i = 0; i < _tcslen(szThreadName); i++) { tname[i] = (char)szThreadName[i]; //poor man's unicode->ansi, TODO: fix } tname[i] = 0; info.szName = tname; #else info.szName = szThreadName; #endif info.dwThreadID = -1; //dwThreadID; info.dwFlags = 0; __try { RaiseException(0x406D1388, 0, sizeof(info) / sizeof(DWORD), (ULONG_PTR*)&info); } __except(EXCEPTION_CONTINUE_EXECUTION) {} } // TODO: check if ever inline LONG SyncInterlockedIncrement(LONG *Dest) { return InterlockedIncrement(Dest); } LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val) { return InterlockedExchangeAdd(Dest, Val); } LONG SyncInterlockedExchange(LONG *Dest, LONG Val) { return InterlockedExchange(Dest, Val); } //////////////////////////////////////// #else // !WIN32, so must be POSIX threads pthread_key_t threadname_key; CriticalSection::CriticalSection(int spincount_unused) { pthread_mutex_init(&mutex, NULL); } CriticalSection::~CriticalSection() { pthread_mutex_destroy(&mutex); } void CriticalSection::Enter() { int ret = pthread_mutex_lock(&mutex); if (ret) fprintf(stderr, "%s: pthread_mutex_lock(%p) failed: %s\n", __FUNCTION__, &mutex, strerror(ret)); } bool CriticalSection::TryEnter() { return(!pthread_mutex_trylock(&mutex)); } void CriticalSection::Leave() { int ret = pthread_mutex_unlock(&mutex); if (ret) fprintf(stderr, "%s: pthread_mutex_unlock(%p) failed: %s\n", __FUNCTION__, &mutex, strerror(ret)); } Thread::Thread(ThreadFunc function, void* arg) : thread_id(0) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 1024 * 1024); int ret = pthread_create(&thread_id, &attr, function, arg); if (ret) fprintf(stderr, "%s: pthread_create(%p, %p, %p, %p) failed: %s\n", __FUNCTION__, &thread_id, &attr, function, arg, strerror(ret)); #ifdef THREAD_DEBUG fprintf(stderr, "created new thread %lu (func=%p, arg=%p)\n", thread_id, function, arg); #endif } Thread::~Thread() { WaitForDeath(); } void Thread::WaitForDeath() { if (thread_id) { void* exit_status; int ret = pthread_join(thread_id, &exit_status); if (ret) fprintf(stderr, "error joining thread %lu: %s\n", thread_id, strerror(ret)); if (exit_status) fprintf(stderr, "thread %lu exited with status %d\n", thread_id, *(int *)exit_status); thread_id = 0; } } void Thread::SetAffinity(int mask) { // This is non-standard #ifdef __linux__ cpu_set_t cpu_set; CPU_ZERO(&cpu_set); for (unsigned int i = 0; i < sizeof(mask) * 8; i++) { if ((mask >> i) & 1){CPU_SET(i, &cpu_set);} } pthread_setaffinity_np(thread_id, sizeof(cpu_set), &cpu_set); #endif } void Thread::SetCurrentThreadAffinity(int mask) { #ifdef __linux__ cpu_set_t cpu_set; CPU_ZERO(&cpu_set); for (size_t i = 0; i < sizeof(mask) * 8; i++) { if ((mask >> i) & 1){CPU_SET(i, &cpu_set);} } pthread_setaffinity_np(pthread_self(), sizeof(cpu_set), &cpu_set); #endif } void InitThreading() { static int thread_init_done = 0; if (thread_init_done) return; if (pthread_key_create(&threadname_key, NULL/*free*/) != 0) perror("Unable to create thread name key: "); thread_init_done++; } void SleepCurrentThread(int ms) { usleep(1000 * ms); } void SetCurrentThreadName(const TCHAR* szThreadName) { pthread_setspecific(threadname_key, strdup(szThreadName)); #ifdef THREAD_DEBUG fprintf(stderr, "%s(%s)\n", __FUNCTION__, szThreadName); #endif } Event::Event() { is_set_ = false; } void Event::Init() { pthread_cond_init(&event_, 0); pthread_mutex_init(&mutex_, 0); } void Event::Shutdown() { pthread_mutex_destroy(&mutex_); pthread_cond_destroy(&event_); } void Event::Set() { pthread_mutex_lock(&mutex_); if (!is_set_) { is_set_ = true; pthread_cond_signal(&event_); } pthread_mutex_unlock(&mutex_); } void Event::Wait() { pthread_mutex_lock(&mutex_); while (!is_set_) { pthread_cond_wait(&event_, &mutex_); } is_set_ = false; pthread_mutex_unlock(&mutex_); } LONG SyncInterlockedIncrement(LONG *Dest) { #if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__)) return __sync_add_and_fetch(Dest, 1); #else register int result; __asm__ __volatile__("lock; xadd %0,%1" : "=r" (result), "=m" (*Dest) : "0" (1), "m" (*Dest) : "memory"); return result; #endif } LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val) { #if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__)) return __sync_add_and_fetch(Dest, Val); #else register int result; __asm__ __volatile__("lock; xadd %0,%1" : "=r" (result), "=m" (*Dest) : "0" (Val), "m" (*Dest) : "memory"); return result; #endif } LONG SyncInterlockedExchange(LONG *Dest, LONG Val) { #if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__)) return __sync_lock_test_and_set(Dest, Val); #else register int result; __asm__ __volatile__("lock; xchg %0,%1" : "=r" (result), "=m" (*Dest) : "0" (Val), "m" (*Dest) : "memory"); return result; #endif } #endif } // end of namespace Common