// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include "Common/Assert.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Flag.h" #include "Common/Logging/Log.h" #include "Core/ConfigManager.h" #include "Core/CoreTiming.h" #include "Core/HW/GPFifo.h" #include "Core/HW/MMIO.h" #include "Core/HW/ProcessorInterface.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/Fifo.h" namespace CommandProcessor { static CoreTiming::EventType* et_UpdateInterrupts; // TODO(ector): Warn on bbox read/write // STATE_TO_SAVE SCPFifoStruct fifo; static UCPStatusReg m_CPStatusReg; static UCPCtrlReg m_CPCtrlReg; static UCPClearReg m_CPClearReg; static u16 m_bboxleft; static u16 m_bboxtop; static u16 m_bboxright; static u16 m_bboxbottom; static u16 m_tokenReg; static Common::Flag s_interrupt_set; static Common::Flag s_interrupt_waiting; static bool IsOnThread() { return SConfig::GetInstance().bCPUThread; } static void UpdateInterrupts_Wrapper(u64 userdata, s64 cyclesLate) { UpdateInterrupts(userdata); } void SCPFifoStruct::DoState(PointerWrap& p) { p.Do(CPBase); p.Do(CPEnd); p.Do(CPHiWatermark); p.Do(CPLoWatermark); p.Do(CPReadWriteDistance); p.Do(CPWritePointer); p.Do(CPReadPointer); p.Do(CPBreakpoint); p.Do(SafeCPReadPointer); p.Do(bFF_GPLinkEnable); p.Do(bFF_GPReadEnable); p.Do(bFF_BPEnable); p.Do(bFF_BPInt); p.Do(bFF_Breakpoint); p.Do(bFF_LoWatermarkInt); p.Do(bFF_HiWatermarkInt); p.Do(bFF_LoWatermark); p.Do(bFF_HiWatermark); } void DoState(PointerWrap& p) { p.DoPOD(m_CPStatusReg); p.DoPOD(m_CPCtrlReg); p.DoPOD(m_CPClearReg); p.Do(m_bboxleft); p.Do(m_bboxtop); p.Do(m_bboxright); p.Do(m_bboxbottom); p.Do(m_tokenReg); fifo.DoState(p); p.Do(s_interrupt_set); p.Do(s_interrupt_waiting); } static inline void WriteLow(std::atomic& reg, u16 lowbits) { reg.store((reg.load(std::memory_order_relaxed) & 0xFFFF0000) | lowbits, std::memory_order_relaxed); } static inline void WriteHigh(std::atomic& reg, u16 highbits) { reg.store((reg.load(std::memory_order_relaxed) & 0x0000FFFF) | (static_cast(highbits) << 16), std::memory_order_relaxed); } void Init() { m_CPStatusReg.Hex = 0; m_CPStatusReg.CommandIdle = 1; m_CPStatusReg.ReadIdle = 1; m_CPCtrlReg.Hex = 0; m_CPClearReg.Hex = 0; m_bboxleft = 0; m_bboxtop = 0; m_bboxright = 640; m_bboxbottom = 480; m_tokenReg = 0; memset(&fifo, 0, sizeof(fifo)); fifo.bFF_Breakpoint.store(0, std::memory_order_relaxed); fifo.bFF_HiWatermark.store(0, std::memory_order_relaxed); fifo.bFF_HiWatermarkInt.store(0, std::memory_order_relaxed); fifo.bFF_LoWatermark.store(0, std::memory_order_relaxed); fifo.bFF_LoWatermarkInt.store(0, std::memory_order_relaxed); s_interrupt_set.Clear(); s_interrupt_waiting.Clear(); et_UpdateInterrupts = CoreTiming::RegisterEvent("CPInterrupt", UpdateInterrupts_Wrapper); } u32 GetPhysicalAddressMask() { // Physical addresses in CP seem to ignore some of the upper bits (depending on platform) // This can be observed in CP MMIO registers by setting to 0xffffffff and then reading back. return SConfig::GetInstance().bWii ? 0x1fffffff : 0x03ffffff; } void RegisterMMIO(MMIO::Mapping* mmio, u32 base) { constexpr u16 WMASK_NONE = 0x0000; constexpr u16 WMASK_ALL = 0xffff; constexpr u16 WMASK_LO_ALIGN_32BIT = 0xffe0; const u16 WMASK_HI_RESTRICT = GetPhysicalAddressMask() >> 16; struct { u32 addr; u16* ptr; bool readonly; // FIFO mmio regs in the range [cc000020-cc00003e] have certain bits that always read as 0 // For _LO registers in this range, only bits 0xffe0 can be set // For _HI registers in this range, only bits 0x03ff can be set on GCN and 0x1fff on Wii u16 wmask; } directly_mapped_vars[] = { {FIFO_TOKEN_REGISTER, &m_tokenReg, false, WMASK_ALL}, // Bounding box registers are read only. {FIFO_BOUNDING_BOX_LEFT, &m_bboxleft, true, WMASK_NONE}, {FIFO_BOUNDING_BOX_RIGHT, &m_bboxright, true, WMASK_NONE}, {FIFO_BOUNDING_BOX_TOP, &m_bboxtop, true, WMASK_NONE}, {FIFO_BOUNDING_BOX_BOTTOM, &m_bboxbottom, true, WMASK_NONE}, {FIFO_BASE_LO, MMIO::Utils::LowPart(&fifo.CPBase), false, WMASK_LO_ALIGN_32BIT}, {FIFO_BASE_HI, MMIO::Utils::HighPart(&fifo.CPBase), false, WMASK_HI_RESTRICT}, {FIFO_END_LO, MMIO::Utils::LowPart(&fifo.CPEnd), false, WMASK_LO_ALIGN_32BIT}, {FIFO_END_HI, MMIO::Utils::HighPart(&fifo.CPEnd), false, WMASK_HI_RESTRICT}, {FIFO_HI_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPHiWatermark), false, WMASK_LO_ALIGN_32BIT}, {FIFO_HI_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPHiWatermark), false, WMASK_HI_RESTRICT}, {FIFO_LO_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPLoWatermark), false, WMASK_LO_ALIGN_32BIT}, {FIFO_LO_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPLoWatermark), false, WMASK_HI_RESTRICT}, // FIFO_RW_DISTANCE has some complex read code different for // single/dual core. {FIFO_WRITE_POINTER_LO, MMIO::Utils::LowPart(&fifo.CPWritePointer), false, WMASK_LO_ALIGN_32BIT}, {FIFO_WRITE_POINTER_HI, MMIO::Utils::HighPart(&fifo.CPWritePointer), false, WMASK_HI_RESTRICT}, // FIFO_READ_POINTER has different code for single/dual core. }; for (auto& mapped_var : directly_mapped_vars) { mmio->Register(base | mapped_var.addr, MMIO::DirectRead(mapped_var.ptr), mapped_var.readonly ? MMIO::InvalidWrite() : MMIO::DirectWrite(mapped_var.ptr, mapped_var.wmask)); } mmio->Register(base | FIFO_BP_LO, MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPBreakpoint)), MMIO::ComplexWrite([](u32, u16 val) { WriteLow(fifo.CPBreakpoint, val & WMASK_LO_ALIGN_32BIT); })); mmio->Register(base | FIFO_BP_HI, MMIO::DirectRead(MMIO::Utils::HighPart(&fifo.CPBreakpoint)), MMIO::ComplexWrite([WMASK_HI_RESTRICT](u32, u16 val) { WriteHigh(fifo.CPBreakpoint, val & WMASK_HI_RESTRICT); })); // Timing and metrics MMIOs are stubbed with fixed values. struct { u32 addr; u16 value; } metrics_mmios[] = { {XF_RASBUSY_L, 0}, {XF_RASBUSY_H, 0}, {XF_CLKS_L, 0}, {XF_CLKS_H, 0}, {XF_WAIT_IN_L, 0}, {XF_WAIT_IN_H, 0}, {XF_WAIT_OUT_L, 0}, {XF_WAIT_OUT_H, 0}, {VCACHE_METRIC_CHECK_L, 0}, {VCACHE_METRIC_CHECK_H, 0}, {VCACHE_METRIC_MISS_L, 0}, {VCACHE_METRIC_MISS_H, 0}, {VCACHE_METRIC_STALL_L, 0}, {VCACHE_METRIC_STALL_H, 0}, {CLKS_PER_VTX_OUT, 4}, }; for (auto& metrics_mmio : metrics_mmios) { mmio->Register(base | metrics_mmio.addr, MMIO::Constant(metrics_mmio.value), MMIO::InvalidWrite()); } mmio->Register(base | STATUS_REGISTER, MMIO::ComplexRead([](u32) { Fifo::SyncGPUForRegisterAccess(); SetCpStatusRegister(); return m_CPStatusReg.Hex; }), MMIO::InvalidWrite()); mmio->Register(base | CTRL_REGISTER, MMIO::DirectRead(&m_CPCtrlReg.Hex), MMIO::ComplexWrite([](u32, u16 val) { UCPCtrlReg tmp(val); m_CPCtrlReg.Hex = tmp.Hex; SetCpControlRegister(); Fifo::RunGpu(); })); mmio->Register(base | CLEAR_REGISTER, MMIO::DirectRead(&m_CPClearReg.Hex), MMIO::ComplexWrite([](u32, u16 val) { UCPClearReg tmp(val); m_CPClearReg.Hex = tmp.Hex; SetCpClearRegister(); Fifo::RunGpu(); })); mmio->Register(base | PERF_SELECT, MMIO::InvalidRead(), MMIO::Nop()); // Some MMIOs have different handlers for single core vs. dual core mode. mmio->Register( base | FIFO_RW_DISTANCE_LO, IsOnThread() ? MMIO::ComplexRead([](u32) { if (fifo.CPWritePointer.load(std::memory_order_relaxed) >= fifo.SafeCPReadPointer.load(std::memory_order_relaxed)) { return static_cast(fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed)); } else { return static_cast(fifo.CPEnd.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed) + fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.CPBase.load(std::memory_order_relaxed) + 32); } }) : MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance)), MMIO::DirectWrite(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance), WMASK_LO_ALIGN_32BIT)); mmio->Register(base | FIFO_RW_DISTANCE_HI, IsOnThread() ? MMIO::ComplexRead([](u32) { Fifo::SyncGPUForRegisterAccess(); if (fifo.CPWritePointer.load(std::memory_order_relaxed) >= fifo.SafeCPReadPointer.load(std::memory_order_relaxed)) { return (fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed)) >> 16; } else { return (fifo.CPEnd.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed) + fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.CPBase.load(std::memory_order_relaxed) + 32) >> 16; } }) : MMIO::ComplexRead([](u32) { Fifo::SyncGPUForRegisterAccess(); return fifo.CPReadWriteDistance.load(std::memory_order_relaxed) >> 16; }), MMIO::ComplexWrite([WMASK_HI_RESTRICT](u32, u16 val) { Fifo::SyncGPUForRegisterAccess(); WriteHigh(fifo.CPReadWriteDistance, val & WMASK_HI_RESTRICT); Fifo::RunGpu(); })); mmio->Register( base | FIFO_READ_POINTER_LO, IsOnThread() ? MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.SafeCPReadPointer)) : MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPReadPointer)), MMIO::DirectWrite(MMIO::Utils::LowPart(&fifo.CPReadPointer), WMASK_LO_ALIGN_32BIT)); mmio->Register(base | FIFO_READ_POINTER_HI, IsOnThread() ? MMIO::ComplexRead([](u32) { Fifo::SyncGPUForRegisterAccess(); return fifo.SafeCPReadPointer.load(std::memory_order_relaxed) >> 16; }) : MMIO::ComplexRead([](u32) { Fifo::SyncGPUForRegisterAccess(); return fifo.CPReadPointer.load(std::memory_order_relaxed) >> 16; }), IsOnThread() ? MMIO::ComplexWrite([WMASK_HI_RESTRICT](u32, u16 val) { Fifo::SyncGPUForRegisterAccess(); WriteHigh(fifo.CPReadPointer, val & WMASK_HI_RESTRICT); fifo.SafeCPReadPointer.store(fifo.CPReadPointer.load(std::memory_order_relaxed), std::memory_order_relaxed); }) : MMIO::ComplexWrite([WMASK_HI_RESTRICT](u32, u16 val) { Fifo::SyncGPUForRegisterAccess(); WriteHigh(fifo.CPReadPointer, val & WMASK_HI_RESTRICT); })); } void GatherPipeBursted() { SetCPStatusFromCPU(); // if we aren't linked, we don't care about gather pipe data if (!m_CPCtrlReg.GPLinkEnable) { if (IsOnThread() && !Fifo::UseDeterministicGPUThread()) { // In multibuffer mode is not allowed write in the same FIFO attached to the GPU. // Fix Pokemon XD in DC mode. if ((ProcessorInterface::Fifo_CPUEnd == fifo.CPEnd.load(std::memory_order_relaxed)) && (ProcessorInterface::Fifo_CPUBase == fifo.CPBase.load(std::memory_order_relaxed)) && fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > 0) { Fifo::FlushGpu(); } } Fifo::RunGpu(); return; } // update the fifo pointer if (fifo.CPWritePointer.load(std::memory_order_relaxed) == fifo.CPEnd.load(std::memory_order_relaxed)) { fifo.CPWritePointer.store(fifo.CPBase, std::memory_order_relaxed); } else { fifo.CPWritePointer.fetch_add(GATHER_PIPE_SIZE, std::memory_order_relaxed); } if (m_CPCtrlReg.GPReadEnable && m_CPCtrlReg.GPLinkEnable) { ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer.load(std::memory_order_relaxed); ProcessorInterface::Fifo_CPUBase = fifo.CPBase.load(std::memory_order_relaxed); ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd.load(std::memory_order_relaxed); } // If the game is running close to overflowing, make the exception checking more frequent. if (fifo.bFF_HiWatermark.load(std::memory_order_relaxed) != 0) CoreTiming::ForceExceptionCheck(0); fifo.CPReadWriteDistance.fetch_add(GATHER_PIPE_SIZE, std::memory_order_seq_cst); Fifo::RunGpu(); ASSERT_MSG(COMMANDPROCESSOR, fifo.CPReadWriteDistance.load(std::memory_order_relaxed) <= fifo.CPEnd.load(std::memory_order_relaxed) - fifo.CPBase.load(std::memory_order_relaxed), "FIFO is overflowed by GatherPipe !\nCPU thread is too fast!"); // check if we are in sync ASSERT_MSG(COMMANDPROCESSOR, fifo.CPWritePointer.load(std::memory_order_relaxed) == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync"); ASSERT_MSG(COMMANDPROCESSOR, fifo.CPBase.load(std::memory_order_relaxed) == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync"); ASSERT_MSG(COMMANDPROCESSOR, fifo.CPEnd.load(std::memory_order_relaxed) == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync"); } void UpdateInterrupts(u64 userdata) { if (userdata) { s_interrupt_set.Set(); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true); } else { s_interrupt_set.Clear(); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt cleared"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false); } CoreTiming::ForceExceptionCheck(0); s_interrupt_waiting.Clear(); Fifo::RunGpu(); } void UpdateInterruptsFromVideoBackend(u64 userdata) { if (!Fifo::UseDeterministicGPUThread()) CoreTiming::ScheduleEvent(0, et_UpdateInterrupts, userdata, CoreTiming::FromThread::NON_CPU); } bool IsInterruptWaiting() { return s_interrupt_waiting.IsSet(); } void SetCPStatusFromGPU() { // breakpoint const bool breakpoint = fifo.bFF_Breakpoint.load(std::memory_order_relaxed); if (fifo.bFF_BPEnable.load(std::memory_order_relaxed) != 0) { if (fifo.CPBreakpoint.load(std::memory_order_relaxed) == fifo.CPReadPointer.load(std::memory_order_relaxed)) { if (!breakpoint) { DEBUG_LOG_FMT(COMMANDPROCESSOR, "Hit breakpoint at {}", fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.bFF_Breakpoint.store(1, std::memory_order_relaxed); } } else { if (breakpoint) { DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}", fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.bFF_Breakpoint.store(0, std::memory_order_relaxed); } } } else { if (breakpoint) { DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}", fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.bFF_Breakpoint = false; } } // overflow & underflow check fifo.bFF_HiWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark), std::memory_order_relaxed); fifo.bFF_LoWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark), std::memory_order_relaxed); bool bpInt = fifo.bFF_Breakpoint.load(std::memory_order_relaxed) && fifo.bFF_BPInt.load(std::memory_order_relaxed); bool ovfInt = fifo.bFF_HiWatermark.load(std::memory_order_relaxed) && fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed); bool undfInt = fifo.bFF_LoWatermark.load(std::memory_order_relaxed) && fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed); bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; if (interrupt != s_interrupt_set.IsSet() && !s_interrupt_waiting.IsSet()) { u64 userdata = interrupt ? 1 : 0; if (IsOnThread()) { if (!interrupt || bpInt || undfInt || ovfInt) { // Schedule the interrupt asynchronously s_interrupt_waiting.Set(); CommandProcessor::UpdateInterruptsFromVideoBackend(userdata); } } else { CommandProcessor::UpdateInterrupts(userdata); } } } void SetCPStatusFromCPU() { // overflow & underflow check fifo.bFF_HiWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark), std::memory_order_relaxed); fifo.bFF_LoWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark), std::memory_order_relaxed); bool bpInt = fifo.bFF_Breakpoint.load(std::memory_order_relaxed) && fifo.bFF_BPInt.load(std::memory_order_relaxed); bool ovfInt = fifo.bFF_HiWatermark.load(std::memory_order_relaxed) && fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed); bool undfInt = fifo.bFF_LoWatermark.load(std::memory_order_relaxed) && fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed); bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; if (interrupt != s_interrupt_set.IsSet() && !s_interrupt_waiting.IsSet()) { u64 userdata = interrupt ? 1 : 0; if (IsOnThread()) { if (!interrupt || bpInt || undfInt || ovfInt) { s_interrupt_set.Set(interrupt); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, interrupt); } } else { CommandProcessor::UpdateInterrupts(userdata); } } } void SetCpStatusRegister() { // Here always there is one fifo attached to the GPU m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint.load(std::memory_order_relaxed); m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) || (fifo.CPReadPointer.load(std::memory_order_relaxed) == fifo.CPWritePointer.load(std::memory_order_relaxed)); m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) || Fifo::AtBreakpoint() || !fifo.bFF_GPReadEnable.load(std::memory_order_relaxed); m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark.load(std::memory_order_relaxed); m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark.load(std::memory_order_relaxed); DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t Read from STATUS_REGISTER : {:04x}", m_CPStatusReg.Hex); DEBUG_LOG_FMT( COMMANDPROCESSOR, "(r) status: iBP {} | fReadIdle {} | fCmdIdle {} | iOvF {} | iUndF {}", m_CPStatusReg.Breakpoint ? "ON" : "OFF", m_CPStatusReg.ReadIdle ? "ON" : "OFF", m_CPStatusReg.CommandIdle ? "ON" : "OFF", m_CPStatusReg.OverflowHiWatermark ? "ON" : "OFF", m_CPStatusReg.UnderflowLoWatermark ? "ON" : "OFF"); } void SetCpControlRegister() { fifo.bFF_BPInt.store(m_CPCtrlReg.BPInt, std::memory_order_relaxed); fifo.bFF_BPEnable.store(m_CPCtrlReg.BPEnable, std::memory_order_relaxed); fifo.bFF_HiWatermarkInt.store(m_CPCtrlReg.FifoOverflowIntEnable, std::memory_order_relaxed); fifo.bFF_LoWatermarkInt.store(m_CPCtrlReg.FifoUnderflowIntEnable, std::memory_order_relaxed); fifo.bFF_GPLinkEnable.store(m_CPCtrlReg.GPLinkEnable, std::memory_order_relaxed); if (fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) && !m_CPCtrlReg.GPReadEnable) { fifo.bFF_GPReadEnable.store(m_CPCtrlReg.GPReadEnable, std::memory_order_relaxed); Fifo::FlushGpu(); } else { fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable; } DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t GPREAD {} | BP {} | Int {} | OvF {} | UndF {} | LINK {}", fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "ON" : "OFF", fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "ON" : "OFF", fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "ON" : "OFF", m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF", m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF", m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF"); } // NOTE: We intentionally don't emulate this function at the moment. // We don't emulate proper GP timing anyway at the moment, so it would just slow down emulation. void SetCpClearRegister() { } void HandleUnknownOpcode(u8 cmd_byte, void* buffer, bool preprocess) { // TODO(Omega): Maybe dump FIFO to file on this error PanicAlertFmtT("GFX FIFO: Unknown Opcode ({0:#04x} @ {1}, {2}).\n" "This means one of the following:\n" "* The emulated GPU got desynced, disabling dual core can help\n" "* Command stream corrupted by some spurious memory bug\n" "* This really is an unknown opcode (unlikely)\n" "* Some other sort of bug\n\n" "Further errors will be sent to the Video Backend log and\n" "Dolphin will now likely crash or hang. Enjoy.", cmd_byte, buffer, preprocess ? "preprocess=true" : "preprocess=false"); { PanicAlertFmt("Illegal command {:02x}\n" "CPBase: {:#010x}\n" "CPEnd: {:#010x}\n" "CPHiWatermark: {:#010x}\n" "CPLoWatermark: {:#010x}\n" "CPReadWriteDistance: {:#010x}\n" "CPWritePointer: {:#010x}\n" "CPReadPointer: {:#010x}\n" "CPBreakpoint: {:#010x}\n" "bFF_GPReadEnable: {}\n" "bFF_BPEnable: {}\n" "bFF_BPInt: {}\n" "bFF_Breakpoint: {}\n" "bFF_GPLinkEnable: {}\n" "bFF_HiWatermarkInt: {}\n" "bFF_LoWatermarkInt: {}\n", cmd_byte, fifo.CPBase.load(std::memory_order_relaxed), fifo.CPEnd.load(std::memory_order_relaxed), fifo.CPHiWatermark, fifo.CPLoWatermark, fifo.CPReadWriteDistance.load(std::memory_order_relaxed), fifo.CPWritePointer.load(std::memory_order_relaxed), fifo.CPReadPointer.load(std::memory_order_relaxed), fifo.CPBreakpoint.load(std::memory_order_relaxed), fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_Breakpoint.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_GPLinkEnable.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false"); } } } // namespace CommandProcessor