// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Atomic.h" #include "Mixer.h" #include "AudioCommon.h" #include "CPUDetect.h" #include "../../Core/Src/Host.h" #include "../../Core/Src/HW/AudioInterface.h" // UGLINESS #include "../../Core/Src/PowerPC/PowerPC.h" #if _M_SSE >= 0x301 && !(defined __GNUC__ && !defined __SSSE3__) #include <tmmintrin.h> #endif // Executed from sound stream thread unsigned int CMixer::Mix(short* samples, unsigned int numSamples) { if (!samples) return 0; std::lock_guard<std::mutex> lk(m_csMixing); if (PowerPC::GetState() != PowerPC::CPU_RUNNING) { // Silence memset(samples, 0, numSamples * 4); return numSamples; } unsigned int numLeft = Common::AtomicLoad(m_numSamples); if (m_AIplaying) { if (numLeft < numSamples)//cannot do much about this m_AIplaying = false; if (numLeft < MAX_SAMPLES/4)//low watermark m_AIplaying = false; } else { if (numLeft > MAX_SAMPLES/2)//high watermark m_AIplaying = true; } if (m_AIplaying) { numLeft = (numLeft > numSamples) ? numSamples : numLeft; if (AudioInterface::GetAIDSampleRate() == m_sampleRate) // (1:1) { #if _M_SSE >= 0x301 if (cpu_info.bSSSE3 && !((numLeft * 2) % 8)) { static const __m128i sr_mask = _mm_set_epi32(0x0C0D0E0FL, 0x08090A0BL, 0x04050607L, 0x00010203L); for (unsigned int i = 0; i < numLeft * 2; i += 8) { _mm_storeu_si128((__m128i *)&samples[i], _mm_shuffle_epi8(_mm_loadu_si128((__m128i *)&m_buffer[(m_indexR + i) & INDEX_MASK]), sr_mask)); } } else #endif { for (unsigned int i = 0; i < numLeft * 2; i+=2) { samples[i] = Common::swap16(m_buffer[(m_indexR + i + 1) & INDEX_MASK]); samples[i+1] = Common::swap16(m_buffer[(m_indexR + i) & INDEX_MASK]); } } m_indexR += numLeft * 2; } else //linear interpolation { //render numleft sample pairs to samples[] //advance m_indexR with sample position //remember fractional offset static u32 frac = 0; const u32 ratio = (u32)( 65536.0f * (float)AudioInterface::GetAIDSampleRate() / (float)m_sampleRate ); for (u32 i = 0; i < numLeft * 2; i+=2) { u32 m_indexR2 = m_indexR + 2; //next sample if ((m_indexR2 & INDEX_MASK) == (m_indexW & INDEX_MASK)) //..if it exists m_indexR2 = m_indexR; s16 l1 = Common::swap16(m_buffer[m_indexR & INDEX_MASK]); //current s16 l2 = Common::swap16(m_buffer[m_indexR2 & INDEX_MASK]); //next int sampleL = ((l1 << 16) + (l2 - l1) * (u16)frac) >> 16; samples[i+1] = sampleL; s16 r1 = Common::swap16(m_buffer[(m_indexR + 1) & INDEX_MASK]); //current s16 r2 = Common::swap16(m_buffer[(m_indexR2 + 1) & INDEX_MASK]); //next int sampleR = ((r1 << 16) + (r2 - r1) * (u16)frac) >> 16; samples[i] = sampleR; frac += ratio; m_indexR += 2 * (u16)(frac >> 16); frac &= 0xffff; } } } else { numLeft = 0; } // Padding if (numSamples > numLeft) { unsigned short s[2]; s[0] = Common::swap16(m_buffer[(m_indexR - 1) & INDEX_MASK]); s[1] = Common::swap16(m_buffer[(m_indexR - 2) & INDEX_MASK]); for (unsigned int i = numLeft*2; i < numSamples*2; i+=2) *(u32*)(samples+i) = *(u32*)(s); // memset(&samples[numLeft * 2], 0, (numSamples - numLeft) * 4); } //when logging, also throttle HLE audio if (m_logAudio) { if (m_AIplaying) { Premix(samples, numLeft); AudioInterface::Callback_GetStreaming(samples, numLeft, m_sampleRate); g_wave_writer.AddStereoSamples(samples, numLeft); } } else { //or mix as usual // Add the DSPHLE sound, re-sampling is done inside Premix(samples, numSamples); // Add the DTK Music // Re-sampling is done inside AudioInterface::Callback_GetStreaming(samples, numSamples, m_sampleRate); } Common::AtomicAdd(m_numSamples, -(s32)numLeft); return numSamples; } void CMixer::PushSamples(const short *samples, unsigned int num_samples) { if (m_throttle) { // The auto throttle function. This loop will put a ceiling on the CPU MHz. while (num_samples + Common::AtomicLoad(m_numSamples) > MAX_SAMPLES) { if (*PowerPC::GetStatePtr() != PowerPC::CPU_RUNNING || soundStream->IsMuted()) break; // Shortcut key for Throttle Skipping if (Host_GetKeyState('\t')) break; SLEEP(1); soundStream->Update(); } } // Check if we have enough free space if (num_samples + Common::AtomicLoad(m_numSamples) > MAX_SAMPLES) return; // AyuanX: Actual re-sampling work has been moved to sound thread // to alleviate the workload on main thread // and we simply store raw data here to make fast mem copy int over_bytes = num_samples * 4 - (MAX_SAMPLES * 2 - (m_indexW & INDEX_MASK)) * sizeof(short); if (over_bytes > 0) { memcpy(&m_buffer[m_indexW & INDEX_MASK], samples, num_samples * 4 - over_bytes); memcpy(&m_buffer[0], samples + (num_samples * 4 - over_bytes) / sizeof(short), over_bytes); } else { memcpy(&m_buffer[m_indexW & INDEX_MASK], samples, num_samples * 4); } m_indexW += num_samples * 2; if (AudioInterface::GetAIDSampleRate() == m_sampleRate) Common::AtomicAdd(m_numSamples, num_samples); else if ((AudioInterface::GetAIDSampleRate() == 32000) && (m_sampleRate == 48000)) Common::AtomicAdd(m_numSamples, num_samples * 3 / 2); else Common::AtomicAdd(m_numSamples, num_samples * 2 / 3); return; } unsigned int CMixer::GetNumSamples() { return Common::AtomicLoad(m_numSamples); }