// Copyright (C) 2003 Dolphin Project.

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License 2.0 for more details.

// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/

// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/

#include <math.h>

#include "Timer.h"

#include "Debugger.h"
#include "DLCache.h"
#include "EmuWindow.h"
#include "Fifo.h"
#include "OnScreenDisplay.h"
#include "PixelEngine.h"
#include "Statistics.h"
#include "VertexShaderManager.h"
#include "VideoConfig.h"

#include "D3DBase.h"
#include "D3DUtil.h"
#include "FramebufferManager.h"
#include "GfxState.h"
#include "PixelShaderCache.h"
#include "Render.h"
#include "TextureCache.h"
#include "VertexShaderCache.h"
#include "Core.h"
#include "Movie.h"
#include "Television.h"
#include "Host.h"
#include "BPFunctions.h"
#include "AVIDump.h"
#include "FPSCounter.h"
#include "ConfigManager.h"
#include <strsafe.h>

namespace DX11
{

static int s_fps = 0;

static u32 s_LastAA = 0;

static u32 s_blendMode;

static Television s_television;

ID3D11Buffer* access_efb_cbuf = NULL;
ID3D11BlendState* clearblendstates[4] = {NULL};
ID3D11DepthStencilState* cleardepthstates[3] = {NULL};
ID3D11BlendState* resetblendstate = NULL;
ID3D11DepthStencilState* resetdepthstate = NULL;
ID3D11RasterizerState* resetraststate = NULL;

static ID3D11Texture2D* s_screenshot_texture = NULL;

// GX pipeline state
struct
{
	D3D11_SAMPLER_DESC sampdc[8];
	D3D11_BLEND_DESC blenddc;
	D3D11_DEPTH_STENCIL_DESC depthdc;
	D3D11_RASTERIZER_DESC rastdc;
} gx_state;

// State translation lookup tables
static const D3D11_BLEND d3dSrcFactors[8] =
{
	D3D11_BLEND_ZERO,
	D3D11_BLEND_ONE,
	D3D11_BLEND_DEST_COLOR,
	D3D11_BLEND_INV_DEST_COLOR,
	D3D11_BLEND_SRC_ALPHA,
	D3D11_BLEND_INV_SRC_ALPHA, // NOTE: Use SRC1_ALPHA if dst alpha is enabled!
	D3D11_BLEND_DEST_ALPHA,
	D3D11_BLEND_INV_DEST_ALPHA
};

static const D3D11_BLEND d3dDestFactors[8] =
{
	D3D11_BLEND_ZERO,
	D3D11_BLEND_ONE,
	D3D11_BLEND_SRC_COLOR,
	D3D11_BLEND_INV_SRC_COLOR,
	D3D11_BLEND_SRC_ALPHA,
	D3D11_BLEND_INV_SRC_ALPHA, // NOTE: Use SRC1_ALPHA if dst alpha is enabled!
	D3D11_BLEND_DEST_ALPHA,
	D3D11_BLEND_INV_DEST_ALPHA
};

//		0	0x00
//		1	Source & destination
//		2	Source & ~destination
//		3	Source
//		4	~Source & destination
//		5	Destination
//		6	Source ^ destination =  Source & ~destination | ~Source & destination
//		7	Source | destination

//		8	~(Source | destination)
//		9	~(Source ^ destination) = ~Source & ~destination | Source & destination
//		10	~Destination
//		11	Source | ~destination
//		12	~Source
//		13	~Source | destination
//		14	~(Source & destination)
//		15	0xff

static const D3D11_BLEND_OP d3dLogicOps[16] =
{
	D3D11_BLEND_OP_ADD,//0
	D3D11_BLEND_OP_ADD,//1
	D3D11_BLEND_OP_SUBTRACT,//2
	D3D11_BLEND_OP_ADD,//3
	D3D11_BLEND_OP_REV_SUBTRACT,//4
	D3D11_BLEND_OP_ADD,//5
	D3D11_BLEND_OP_MAX,//6
	D3D11_BLEND_OP_ADD,//7
	
	D3D11_BLEND_OP_MAX,//8
	D3D11_BLEND_OP_MAX,//9
	D3D11_BLEND_OP_ADD,//10
	D3D11_BLEND_OP_ADD,//11
	D3D11_BLEND_OP_ADD,//12
	D3D11_BLEND_OP_ADD,//13
	D3D11_BLEND_OP_ADD,//14
	D3D11_BLEND_OP_ADD//15
};

static const D3D11_BLEND d3dLogicOpSrcFactors[16] =
{
	D3D11_BLEND_ZERO,//0
	D3D11_BLEND_DEST_COLOR,//1
	D3D11_BLEND_ONE,//2
	D3D11_BLEND_ONE,//3
	D3D11_BLEND_DEST_COLOR,//4
	D3D11_BLEND_ZERO,//5
	D3D11_BLEND_INV_DEST_COLOR,//6
	D3D11_BLEND_INV_DEST_COLOR,//7

	D3D11_BLEND_INV_SRC_COLOR,//8
	D3D11_BLEND_INV_SRC_COLOR,//9
	D3D11_BLEND_INV_DEST_COLOR,//10
	D3D11_BLEND_ONE,//11
	D3D11_BLEND_INV_SRC_COLOR,//12
	D3D11_BLEND_INV_SRC_COLOR,//13 
	D3D11_BLEND_INV_DEST_COLOR,//14
	D3D11_BLEND_ONE//15
};

static const D3D11_BLEND d3dLogicOpDestFactors[16] =
{
	D3D11_BLEND_ZERO,//0
	D3D11_BLEND_ZERO,//1
	D3D11_BLEND_INV_SRC_COLOR,//2
	D3D11_BLEND_ZERO,//3
	D3D11_BLEND_ONE,//4
	D3D11_BLEND_ONE,//5
	D3D11_BLEND_INV_SRC_COLOR,//6
	D3D11_BLEND_ONE,//7

	D3D11_BLEND_INV_DEST_COLOR,//8
	D3D11_BLEND_SRC_COLOR,//9
	D3D11_BLEND_INV_DEST_COLOR,//10
	D3D11_BLEND_INV_DEST_COLOR,//11
	D3D11_BLEND_INV_SRC_COLOR,//12
	D3D11_BLEND_ONE,//13 
	D3D11_BLEND_INV_SRC_COLOR,//14
	D3D11_BLEND_ONE//15
};

static const D3D11_CULL_MODE d3dCullModes[4] =
{
	D3D11_CULL_NONE,
	D3D11_CULL_BACK,
	D3D11_CULL_FRONT,
	D3D11_CULL_BACK
};

static const D3D11_COMPARISON_FUNC d3dCmpFuncs[8] =
{
	D3D11_COMPARISON_NEVER,
	D3D11_COMPARISON_LESS,
	D3D11_COMPARISON_EQUAL,
	D3D11_COMPARISON_LESS_EQUAL,
	D3D11_COMPARISON_GREATER,
	D3D11_COMPARISON_NOT_EQUAL,
	D3D11_COMPARISON_GREATER_EQUAL,
	D3D11_COMPARISON_ALWAYS
};

#define TEXF_NONE   0
#define TEXF_POINT  1
#define TEXF_LINEAR 2
static const unsigned int d3dMipFilters[4] =
{
	TEXF_NONE,
	TEXF_POINT,
	TEXF_LINEAR,
	TEXF_NONE, //reserved
};

static const D3D11_TEXTURE_ADDRESS_MODE d3dClamps[4] =
{
	D3D11_TEXTURE_ADDRESS_CLAMP,
	D3D11_TEXTURE_ADDRESS_WRAP,
	D3D11_TEXTURE_ADDRESS_MIRROR,
	D3D11_TEXTURE_ADDRESS_WRAP //reserved
};


void SetupDeviceObjects()
{
	s_television.Init();

	g_framebuffer_manager = new FramebufferManager;

	HRESULT hr;
	float colmat[20]= {0.0f};
	colmat[0] = colmat[5] = colmat[10] = 1.0f;
	D3D11_BUFFER_DESC cbdesc = CD3D11_BUFFER_DESC(20*sizeof(float), D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DEFAULT);
	D3D11_SUBRESOURCE_DATA data;
	data.pSysMem = colmat;
	hr = D3D::device->CreateBuffer(&cbdesc, &data, &access_efb_cbuf);
	CHECK(hr==S_OK, "Create constant buffer for Renderer::AccessEFB");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)access_efb_cbuf, "constant buffer for Renderer::AccessEFB");

	D3D11_DEPTH_STENCIL_DESC ddesc;
	ddesc.DepthEnable	  = FALSE;
	ddesc.DepthWriteMask   = D3D11_DEPTH_WRITE_MASK_ZERO;
	ddesc.DepthFunc		= D3D11_COMPARISON_ALWAYS;
	ddesc.StencilEnable	= FALSE;
	ddesc.StencilReadMask  = D3D11_DEFAULT_STENCIL_READ_MASK;
	ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
	hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[0]);
	CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen");
	ddesc.DepthWriteMask   = D3D11_DEPTH_WRITE_MASK_ALL;
	ddesc.DepthEnable	  = TRUE;
	hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[1]);
	CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen");
	ddesc.DepthWriteMask   = D3D11_DEPTH_WRITE_MASK_ZERO;
	hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[2]);
	CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[0], "depth state for Renderer::ClearScreen (depth buffer disabled)");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[1], "depth state for Renderer::ClearScreen (depth buffer enabled, writing enabled)");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[2], "depth state for Renderer::ClearScreen (depth buffer enabled, writing disabled)");

	D3D11_BLEND_DESC blenddesc;
	blenddesc.AlphaToCoverageEnable = FALSE;
	blenddesc.IndependentBlendEnable = FALSE;
	blenddesc.RenderTarget[0].BlendEnable = FALSE;
	blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
	blenddesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
	blenddesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
	blenddesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
	blenddesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
	blenddesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
	blenddesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
	hr = D3D::device->CreateBlendState(&blenddesc, &resetblendstate);
	CHECK(hr==S_OK, "Create blend state for Renderer::ResetAPIState");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)resetblendstate, "blend state for Renderer::ResetAPIState");

	clearblendstates[0] = resetblendstate;
	resetblendstate->AddRef();

	blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE;
	hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[1]);
	CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen");

	blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
	hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[2]);
	CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen");

	blenddesc.RenderTarget[0].RenderTargetWriteMask = 0;
	hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[3]);
	CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen");

	ddesc.DepthEnable	   = FALSE;
	ddesc.DepthWriteMask	= D3D11_DEPTH_WRITE_MASK_ZERO;
	ddesc.DepthFunc		 = D3D11_COMPARISON_LESS;
	ddesc.StencilEnable	 = FALSE;
	ddesc.StencilReadMask   = D3D11_DEFAULT_STENCIL_READ_MASK;
	ddesc.StencilWriteMask  = D3D11_DEFAULT_STENCIL_WRITE_MASK;
	hr = D3D::device->CreateDepthStencilState(&ddesc, &resetdepthstate);
	CHECK(hr==S_OK, "Create depth state for Renderer::ResetAPIState");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)resetdepthstate, "depth stencil state for Renderer::ResetAPIState");

	D3D11_RASTERIZER_DESC rastdesc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0.f, false, false, false, false);
	hr = D3D::device->CreateRasterizerState(&rastdesc, &resetraststate);
	CHECK(hr==S_OK, "Create rasterizer state for Renderer::ResetAPIState");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)resetraststate, "rasterizer state for Renderer::ResetAPIState");

	s_screenshot_texture = NULL;
}

// Kill off all device objects
void TeardownDeviceObjects()
{
	delete g_framebuffer_manager;

	SAFE_RELEASE(access_efb_cbuf);
	SAFE_RELEASE(clearblendstates[0]);
	SAFE_RELEASE(clearblendstates[1]);
	SAFE_RELEASE(clearblendstates[2]);
	SAFE_RELEASE(clearblendstates[3]);
	SAFE_RELEASE(cleardepthstates[0]);
	SAFE_RELEASE(cleardepthstates[1]);
	SAFE_RELEASE(cleardepthstates[2]);
	SAFE_RELEASE(resetblendstate);
	SAFE_RELEASE(resetdepthstate);
	SAFE_RELEASE(resetraststate);
	SAFE_RELEASE(s_screenshot_texture);

	s_television.Shutdown();
}

void CreateScreenshotTexture()
{
	D3D11_TEXTURE2D_DESC scrtex_desc = CD3D11_TEXTURE2D_DESC(DXGI_FORMAT_R8G8B8A8_UNORM, D3D::GetBackBufferWidth(), D3D::GetBackBufferHeight(), 1, 1, 0, D3D11_USAGE_STAGING, D3D11_CPU_ACCESS_READ|D3D11_CPU_ACCESS_WRITE);
	HRESULT hr = D3D::device->CreateTexture2D(&scrtex_desc, NULL, &s_screenshot_texture);
	CHECK(hr==S_OK, "Create screenshot staging texture");
	D3D::SetDebugObjectName((ID3D11DeviceChild*)s_screenshot_texture, "staging screenshot texture");
}

Renderer::Renderer()
{
	int x, y, w_temp, h_temp;
	s_blendMode = 0;

	InitFPSCounter();

	Host_GetRenderWindowSize(x, y, w_temp, h_temp);

	D3D::Create(EmuWindow::GetWnd());

	s_backbuffer_width = D3D::GetBackBufferWidth();
	s_backbuffer_height = D3D::GetBackBufferHeight();

	FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
	FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);

	UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);

	s_LastAA = g_ActiveConfig.iMultisampleMode;
	s_LastEFBScale = g_ActiveConfig.iEFBScale;
	CalculateTargetSize(s_backbuffer_width, s_backbuffer_height);

	SetupDeviceObjects();


	// Setup GX pipeline state
	memset(&gx_state.blenddc, 0, sizeof(gx_state.blenddc));
	gx_state.blenddc.AlphaToCoverageEnable = FALSE;
	gx_state.blenddc.IndependentBlendEnable = FALSE;
	gx_state.blenddc.RenderTarget[0].BlendEnable = FALSE;
	gx_state.blenddc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
	gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
	gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
	gx_state.blenddc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
	gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
	gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
	gx_state.blenddc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;

	memset(&gx_state.depthdc, 0, sizeof(gx_state.depthdc));
	gx_state.depthdc.DepthEnable        = TRUE;
	gx_state.depthdc.DepthWriteMask     = D3D11_DEPTH_WRITE_MASK_ALL;
	gx_state.depthdc.DepthFunc          = D3D11_COMPARISON_LESS;
	gx_state.depthdc.StencilEnable      = FALSE;
	gx_state.depthdc.StencilReadMask    = D3D11_DEFAULT_STENCIL_READ_MASK;
	gx_state.depthdc.StencilWriteMask   = D3D11_DEFAULT_STENCIL_WRITE_MASK;

	// TODO: Do we need to enable multisampling here?
	gx_state.rastdc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0, false, true, false, false);

	for (unsigned int k = 0;k < 8;k++)
	{
		float border[4] = {0.f, 0.f, 0.f, 0.f};
		gx_state.sampdc[k] = CD3D11_SAMPLER_DESC(D3D11_FILTER_MIN_MAG_MIP_LINEAR, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_CLAMP,
											0.f, 1 << g_ActiveConfig.iMaxAnisotropy,
											D3D11_COMPARISON_ALWAYS, border,
											-D3D11_FLOAT32_MAX, D3D11_FLOAT32_MAX);
		if(g_ActiveConfig.iMaxAnisotropy != 0) gx_state.sampdc[k].Filter = D3D11_FILTER_ANISOTROPIC;
	}

	// Clear EFB textures
	float ClearColor[4] = { 0.f, 0.f, 0.f, 1.f };
	D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), ClearColor);
	D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 1.f, 0);

	D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)s_target_width, (float)s_target_height);
	D3D::context->RSSetViewports(1, &vp);
	D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
	D3D::BeginFrame();
}

Renderer::~Renderer()
{
	TeardownDeviceObjects();
	D3D::EndFrame();
	D3D::Present();
	D3D::Close();
}

void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
	D3D::font.DrawTextScaled((float)left, (float)top, 20.f, 0.0f, color, text);
}

TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
	TargetRectangle result;
	result.left   = EFBToScaledX(rc.left);
	result.top    = EFBToScaledY(rc.top);
	result.right  = EFBToScaledX(rc.right);
	result.bottom = EFBToScaledY(rc.bottom);
	return result;
}

// With D3D, we have to resize the backbuffer if the window changed
// size.
bool Renderer::CheckForResize()
{
	while (EmuWindow::IsSizing())
		Sleep(10);

	if (EmuWindow::GetParentWnd())
	{
		// Re-stretch window to parent window size again, if it has a parent window.
		RECT rcParentWindow;
		GetWindowRect(EmuWindow::GetParentWnd(), &rcParentWindow);
		int width = rcParentWindow.right - rcParentWindow.left;
		int height = rcParentWindow.bottom - rcParentWindow.top;
		if (width != Renderer::GetBackbufferWidth() || height != Renderer::GetBackbufferHeight())
			MoveWindow(EmuWindow::GetWnd(), 0, 0, width, height, FALSE);
	}
	RECT rcWindow;
	GetClientRect(EmuWindow::GetWnd(), &rcWindow);
	int client_width = rcWindow.right - rcWindow.left;
	int client_height = rcWindow.bottom - rcWindow.top;

	// Sanity check
	if ((client_width != Renderer::GetBackbufferWidth() ||
		client_height != Renderer::GetBackbufferHeight()) && 
		client_width >= 4 && client_height >= 4)
	{
		return true;
	}

	return false;
}

void Renderer::SetScissorRect(const TargetRectangle& rc)
{
	D3D::context->RSSetScissorRects(1, rc.AsRECT());
}

void Renderer::SetColorMask()
{
	// Only enable alpha channel if it's supported by the current EFB format
	UINT8 color_mask = 0;
	if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
		color_mask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
	if (bpmem.blendmode.colorupdate)
		color_mask |= D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE;
	gx_state.blenddc.RenderTarget[0].RenderTargetWriteMask = color_mask;
}

// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
//	- GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
//	- GX_PokeAlphaMode (TODO)
//	- GX_PokeAlphaUpdate (TODO)
//	- GX_PokeBlendMode (TODO)
//	- GX_PokeColorUpdate (TODO)
//	- GX_PokeDither (TODO)
//	- GX_PokeDstAlpha (TODO)
//	- GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
	// TODO: This function currently is broken if anti-aliasing is enabled
	D3D11_MAPPED_SUBRESOURCE map;
	ID3D11Texture2D* read_tex;

	if (!g_ActiveConfig.bEFBAccessEnable)
		return 0;

	if (type == POKE_Z)
	{
		static bool alert_only_once = true;
		if (!alert_only_once) return 0;
		PanicAlert("EFB: Poke Z not implemented (tried to poke z value %#x at (%d,%d))", poke_data, x, y);
		alert_only_once = false;
		return 0;
	}

	// Convert EFB dimensions to the ones of our render target
	EFBRectangle efbPixelRc;
	efbPixelRc.left = x;
	efbPixelRc.top = y;
	efbPixelRc.right = x + 1;
	efbPixelRc.bottom = y + 1;
	TargetRectangle targetPixelRc = Renderer::ConvertEFBRectangle(efbPixelRc);

	// Take the mean of the resulting dimensions; TODO: Don't use the center pixel, compute the average color instead
	D3D11_RECT RectToLock;
	if(type == PEEK_COLOR || type == PEEK_Z)
	{
		RectToLock.left = (targetPixelRc.left + targetPixelRc.right) / 2;
		RectToLock.top = (targetPixelRc.top + targetPixelRc.bottom) / 2;
		RectToLock.right = RectToLock.left + 1;
		RectToLock.bottom = RectToLock.top + 1;
	}
	else
	{
		RectToLock.left = targetPixelRc.left;
		RectToLock.right = targetPixelRc.right;
		RectToLock.top = targetPixelRc.top;
		RectToLock.bottom = targetPixelRc.bottom;
	}

	if (type == PEEK_Z)
	{
		ResetAPIState(); // Reset any game specific settings

		// depth buffers can only be completely CopySubresourceRegion'ed, so we're using drawShadedTexQuad instead
		D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, 1.f, 1.f);
		D3D::context->RSSetViewports(1, &vp);
		D3D::context->PSSetConstantBuffers(0, 1, &access_efb_cbuf);
		D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBDepthReadTexture()->GetRTV(), NULL);
		D3D::SetPointCopySampler();
		D3D::drawShadedTexQuad(FramebufferManager::GetEFBDepthTexture()->GetSRV(),
								&RectToLock,
								Renderer::GetTargetWidth(),
								Renderer::GetTargetHeight(),
								PixelShaderCache::GetDepthMatrixProgram(true),
								VertexShaderCache::GetSimpleVertexShader(),
								VertexShaderCache::GetSimpleInputLayout());

		D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());

		// copy to system memory
		D3D11_BOX box = CD3D11_BOX(0, 0, 0, 1, 1, 1);
		read_tex = FramebufferManager::GetEFBDepthStagingBuffer();
		D3D::context->CopySubresourceRegion(read_tex, 0, 0, 0, 0, FramebufferManager::GetEFBDepthReadTexture()->GetTex(), 0, &box);

		RestoreAPIState(); // restore game state

		// read the data from system memory
		D3D::context->Map(read_tex, 0, D3D11_MAP_READ, 0, &map);

		float val = *(float*)map.pData;
		u32 ret = 0;
		if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
		{
			// if Z is in 16 bit format you must return a 16 bit integer
			ret = ((u32)(val * 0xffff));
		}
		else
		{
			ret = ((u32)(val * 0xffffff));
		}
		D3D::context->Unmap(read_tex, 0);

		// TODO: in RE0 this value is often off by one in Video_DX9 (where this code is derived from), which causes lighting to disappear
		return ret;
	}
	else if (type == PEEK_COLOR)
	{
		// we can directly copy to system memory here
		read_tex = FramebufferManager::GetEFBColorStagingBuffer();
		D3D11_BOX box = CD3D11_BOX(RectToLock.left, RectToLock.top, 0, RectToLock.right, RectToLock.bottom, 1);
		D3D::context->CopySubresourceRegion(read_tex, 0, 0, 0, 0, FramebufferManager::GetEFBColorTexture()->GetTex(), 0, &box);

		// read the data from system memory
		D3D::context->Map(read_tex, 0, D3D11_MAP_READ, 0, &map);
		u32 ret = 0;
		if(map.pData)
			ret = *(u32*)map.pData;
		D3D::context->Unmap(read_tex, 0);

		// check what to do with the alpha channel (GX_PokeAlphaRead)
		PixelEngine::UPEAlphaReadReg alpha_read_mode;
		PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);

		if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
		{
			ret = RGBA8ToRGBA6ToRGBA8(ret);
		}
		else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
		{
			ret = RGBA8ToRGB565ToRGBA8(ret);
		}			
		if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
		{
			ret |= 0xFF000000;
		}

		if(alpha_read_mode.ReadMode == 2) return ret; // GX_READ_NONE
		else if(alpha_read_mode.ReadMode == 1) return (ret | 0xFF000000); // GX_READ_FF
		else /*if(alpha_read_mode.ReadMode == 0)*/ return (ret & 0x00FFFFFF); // GX_READ_00
	}
	else //if(type == POKE_COLOR)
	{
		u32 rgbaColor = (poke_data & 0xFF00FF00) | ((poke_data >> 16) & 0xFF) | ((poke_data << 16) & 0xFF0000);

		// TODO: The first five PE registers may change behavior of EFB pokes, this isn't implemented, yet.
		ResetAPIState();

		D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), NULL);
		D3D::drawColorQuad(rgbaColor, (float)RectToLock.left   * 2.f / (float)Renderer::GetTargetWidth()  - 1.f,
									- (float)RectToLock.top	* 2.f / (float)Renderer::GetTargetHeight() + 1.f,
									  (float)RectToLock.right  * 2.f / (float)Renderer::GetTargetWidth()  - 1.f,
									- (float)RectToLock.bottom * 2.f / (float)Renderer::GetTargetHeight() + 1.f);

		RestoreAPIState();
		return 0;
	}
}

// Viewport correction:
// Say you want a viewport at (ix, iy) with size (iw, ih),
// but your viewport must be clamped at (ax, ay) with size (aw, ah).
// Just multiply the projection matrix with the following to get the same
// effect:
// [   (iw/aw)         0     0    ((iw - 2*(ax-ix)) / aw - 1)   ]
// [         0   (ih/ah)     0   ((-ih + 2*(ay-iy)) / ah + 1)   ]
// [         0         0     1                              0   ]
// [         0         0     0                              1   ]
static void ViewportCorrectionMatrix(Matrix44& result,
	float ix, float iy, float iw, float ih, // Intended viewport (x, y, width, height)
	float ax, float ay, float aw, float ah) // Actual viewport (x, y, width, height)
{
	Matrix44::LoadIdentity(result);
	if (aw == 0.f || ah == 0.f)
		return;
	result.data[4*0+0] = iw / aw;
	result.data[4*0+3] = (iw - 2.f * (ax - ix)) / aw - 1.f;
	result.data[4*1+1] = ih / ah;
	result.data[4*1+3] = (-ih + 2.f * (ay - iy)) / ah + 1.f;
}

// Called from VertexShaderManager
void Renderer::UpdateViewport(Matrix44& vpCorrection)
{
	// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
	// [0] = width/2
	// [1] = height/2
	// [2] = 16777215 * (farz - nearz)
	// [3] = xorig + width/2 + 342
	// [4] = yorig + height/2 + 342
	// [5] = 16777215 * farz

	int scissorXOff = bpmem.scissorOffset.x * 2;
	int scissorYOff = bpmem.scissorOffset.y * 2;

	// TODO: ceil, floor or just cast to int?
	// TODO: Directly use the floats instead of rounding them?
	int intendedX = Renderer::EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - scissorXOff));
	int intendedY = Renderer::EFBToScaledY((int)ceil(xfregs.viewport.yOrig + xfregs.viewport.ht - scissorYOff));
	int intendedWd = Renderer::EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd));
	int intendedHt = Renderer::EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht));
	if (intendedWd < 0)
	{
		intendedX += intendedWd;
		intendedWd = -intendedWd;
	}
	if (intendedHt < 0)
	{
		intendedY += intendedHt;
		intendedHt = -intendedHt;
	}

	// In D3D, the viewport rectangle must fit within the render target.
	int X = intendedX;
	if (X < 0)
		X = 0;

	int Y = intendedY;
	if (Y < 0)
		Y = 0;

	int Wd = intendedWd;
	if (X + Wd > GetTargetWidth())
		Wd = GetTargetWidth() - X;
	int Ht = intendedHt;
	if (Y + Ht > GetTargetHeight())
		Ht = GetTargetHeight() - Y;
	
	// If GX viewport is off the render target, we must clamp our viewport
	// within the bounds. Use the correction matrix to compensate.
	ViewportCorrectionMatrix(vpCorrection,
		(float)intendedX, (float)intendedY,
		(float)intendedWd, (float)intendedHt,
		(float)X, (float)Y,
		(float)Wd, (float)Ht);

	// Some games set invalids values for z min and z max so fix them to the max an min alowed and let the shaders do this work
	D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)X, (float)Y,
										(float)Wd, (float)Ht,
										0.f,	// (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f;
										1.f);   //  xfregs.viewport.farZ / 16777216.0f;
	D3D::context->RSSetViewports(1, &vp);
}

void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
	ResetAPIState();

	if (colorEnable && alphaEnable) D3D::stateman->PushBlendState(clearblendstates[0]);
	else if (colorEnable) D3D::stateman->PushBlendState(clearblendstates[1]);
	else if (alphaEnable) D3D::stateman->PushBlendState(clearblendstates[2]);
	else D3D::stateman->PushBlendState(clearblendstates[3]);

	// TODO: Should we enable Z testing here?
	/*if (!bpmem.zmode.testenable) D3D::stateman->PushDepthState(cleardepthstates[0]);
	else */if (zEnable) D3D::stateman->PushDepthState(cleardepthstates[1]);
	else /*if (!zEnable)*/ D3D::stateman->PushDepthState(cleardepthstates[2]);

	// Update the view port for clearing the picture
	TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc);
	D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top, (float)targetRc.GetWidth(), (float)targetRc.GetHeight(), 0.f, 1.f); 
	D3D::context->RSSetViewports(1, &vp);

	// Color is passed in bgra mode so we need to convert it to rgba
	u32 rgbaColor = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000);
	D3D::drawClearQuad(rgbaColor, (z & 0xFFFFFF) / float(0xFFFFFF), PixelShaderCache::GetClearProgram(), VertexShaderCache::GetClearVertexShader(), VertexShaderCache::GetClearInputLayout());

	D3D::stateman->PopDepthState();
	D3D::stateman->PopBlendState();

	RestoreAPIState();
}

void Renderer::ReinterpretPixelData(unsigned int convtype)
{
	// TODO: MSAA support..
	D3D11_RECT source = CD3D11_RECT(0, 0, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight());

	ID3D11PixelShader* pixel_shader;
	if (convtype == 0) pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(true);
	else if (convtype == 2) pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(true);
	else
	{
		ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype);
		return;
	}

	// convert data and set the target texture as our new EFB
	g_renderer->ResetAPIState();

	D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)g_renderer->GetTargetWidth(), (float)g_renderer->GetTargetHeight());
	D3D::context->RSSetViewports(1, &vp);

	D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV(), NULL);
	D3D::SetPointCopySampler();
	D3D::drawShadedTexQuad(FramebufferManager::GetEFBColorTexture()->GetSRV(), &source, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout());

	g_renderer->RestoreAPIState();

	FramebufferManager::SwapReinterpretTexture();
	D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
}

void SetSrcBlend(D3D11_BLEND val)
{
	// Colors should blend against SRC_ALPHA
	if (val == D3D11_BLEND_SRC1_ALPHA)
		val = D3D11_BLEND_SRC_ALPHA;
	else if (val == D3D11_BLEND_INV_SRC1_ALPHA)
		val = D3D11_BLEND_INV_SRC_ALPHA;

	if (val == D3D11_BLEND_SRC_COLOR)
		gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA;
	else if (val == D3D11_BLEND_INV_SRC_COLOR)
		gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
	else if (val == D3D11_BLEND_DEST_COLOR)
		gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA;
	else if (val == D3D11_BLEND_INV_DEST_COLOR)
		gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA;
	else
		gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = val;

	gx_state.blenddc.RenderTarget[0].SrcBlend = val;
}

void SetDestBlend(D3D11_BLEND val)
{
	// Colors should blend against SRC_ALPHA
	if (val == D3D11_BLEND_SRC1_ALPHA)
		val = D3D11_BLEND_SRC_ALPHA;
	else if (val == D3D11_BLEND_INV_SRC1_ALPHA)
		val = D3D11_BLEND_INV_SRC_ALPHA;

	if (val == D3D11_BLEND_SRC_COLOR)
		gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA;
	else if (val == D3D11_BLEND_INV_SRC_COLOR)
		gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
	else if (val == D3D11_BLEND_DEST_COLOR)
		gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_DEST_ALPHA;
	else if (val == D3D11_BLEND_INV_DEST_COLOR)
		gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA;
	else
		gx_state.blenddc.RenderTarget[0].DestBlendAlpha = val;

	gx_state.blenddc.RenderTarget[0].DestBlend = val;
}

void SetBlendOp(D3D11_BLEND_OP val)
{
	gx_state.blenddc.RenderTarget[0].BlendOp = val;
	gx_state.blenddc.RenderTarget[0].BlendOpAlpha = val;
}

void Renderer::SetBlendMode(bool forceUpdate)
{
	if (bpmem.blendmode.logicopenable && !forceUpdate)
		return;

	if (bpmem.blendmode.subtract)  // enable blending src 1 dst 1
	{
		gx_state.blenddc.RenderTarget[0].BlendEnable = true;
		SetBlendOp(D3D11_BLEND_OP_REV_SUBTRACT);
		SetSrcBlend(d3dSrcFactors[1]);
		SetDestBlend(d3dDestFactors[1]);
	}
	else
	{
		gx_state.blenddc.RenderTarget[0].BlendEnable = bpmem.blendmode.blendenable && (!( bpmem.blendmode.srcfactor == 1 && bpmem.blendmode.dstfactor == 0));
		if (bpmem.blendmode.blendenable && (!( bpmem.blendmode.srcfactor == 1 && bpmem.blendmode.dstfactor == 0)))
		{
			SetBlendOp(D3D11_BLEND_OP_ADD);
			SetSrcBlend(d3dSrcFactors[bpmem.blendmode.srcfactor]);
			SetDestBlend(d3dDestFactors[bpmem.blendmode.dstfactor]);
		}
	}
}

bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &rc)
{
	if (!s_screenshot_texture)
		CreateScreenshotTexture();

	// copy back buffer to system memory
	D3D::context->CopyResource(s_screenshot_texture, (ID3D11Resource*)D3D::GetBackBuffer()->GetTex());

	// D3DX11SaveTextureToFileA doesn't allow us to ignore the alpha channel, so we need to strip it out ourselves
	D3D11_MAPPED_SUBRESOURCE map;
	D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ_WRITE, 0, &map);
	for (unsigned int y = 0; y < D3D::GetBackBufferHeight(); ++y)
	{
		u8* ptr = (u8*)map.pData + y * map.RowPitch + 3;
		for (unsigned int x = 0; x < D3D::GetBackBufferWidth(); ++x)
		{
			*ptr = 0xFF;
			ptr += 4;
		}
	}
	D3D::context->Unmap(s_screenshot_texture, 0);

	// ready to be saved
	HRESULT hr = PD3DX11SaveTextureToFileA(D3D::context, s_screenshot_texture, D3DX11_IFF_PNG, filename.c_str());

	return SUCCEEDED(hr);
}

void formatBufferDump(const char *in, char *out, int w, int h, int p)
{
	for (int y = 0; y < h; ++y)
	{
		const u8 *line = (u8*)(in + (h - y - 1) * p);
		for (int x = 0; x < w; ++x)
		{
			out[0] = line[2];
			out[1] = line[1];
			out[2] = line[0];
			out += 3;
			line += 4;
		}
	}
}

// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
	if (g_bSkipCurrentFrame || (!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight)
	{
		if (g_ActiveConfig.bDumpFrames && frame_data)
			AVIDump::AddFrame(frame_data);

		Core::Callback_VideoCopiedToXFB(false);
		return;
	}
	// this function is called after the XFB field is changed, not after
	// EFB is copied to XFB. In this way, flickering is reduced in games
	// and seems to also give more FPS in ZTP

	u32 xfbCount = 0;
	const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
	if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB)
	{
		if (g_ActiveConfig.bDumpFrames && frame_data)
			AVIDump::AddFrame(frame_data);

		Core::Callback_VideoCopiedToXFB(false);
		return;
	}

	ResetAPIState();

	// Prepare to copy the XFBs to our backbuffer
	UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);

	int X = GetTargetRectangle().left;
	int Y = GetTargetRectangle().top;
	int Width  = GetTargetRectangle().right - GetTargetRectangle().left;
	int Height = GetTargetRectangle().bottom - GetTargetRectangle().top;

	// TODO: Redundant checks...
	if (X < 0) X = 0;
	if (Y < 0) Y = 0;
	if (X > s_backbuffer_width) X = s_backbuffer_width;
	if (Y > s_backbuffer_height) Y = s_backbuffer_height;
	if (Width < 0) Width = 0;
	if (Height < 0) Height = 0;
	if (Width > (s_backbuffer_width - X)) Width = s_backbuffer_width - X;
	if (Height > (s_backbuffer_height - Y)) Height = s_backbuffer_height - Y;
	D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)X, (float)Y, (float)Width, (float)Height);
	D3D::context->RSSetViewports(1, &vp);
	D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), NULL);

	float ClearColor[4] = { 0.f, 0.f, 0.f, 1.f };
	D3D::context->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV(), ClearColor);

	// activate linear filtering for the buffer copies
	D3D::SetLinearCopySampler();

	if (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)
	{
		// TODO: Television should be used to render Virtual XFB mode as well.
		s_television.Submit(xfbAddr, fbWidth, fbHeight);
		s_television.Render();
	}
	else if(g_ActiveConfig.bUseXFB)
	{
		const XFBSourceBase* xfbSource;

		// draw each xfb source
		for (u32 i = 0; i < xfbCount; ++i)
		{
			xfbSource = xfbSourceList[i];
			MathUtil::Rectangle<float> sourceRc;
			
			sourceRc.left = 0;
			sourceRc.top = 0;
			sourceRc.right = (float)xfbSource->texWidth;
			sourceRc.bottom = (float)xfbSource->texHeight;

			MathUtil::Rectangle<float> drawRc;

			if (g_ActiveConfig.bUseRealXFB)
			{
				drawRc.top = 1;
				drawRc.bottom = -1;
				drawRc.left = -1;
				drawRc.right = 1;
			}
			else
			{
				// use virtual xfb with offset
				int xfbHeight = xfbSource->srcHeight;
				int xfbWidth = xfbSource->srcWidth;
				int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);

				drawRc.top = 1.0f - (2.0f * (hOffset) / (float)fbHeight);
				drawRc.bottom = 1.0f - (2.0f * (hOffset + xfbHeight) / (float)fbHeight);
				drawRc.left = -(xfbWidth / (float)fbWidth);
				drawRc.right = (xfbWidth / (float)fbWidth);

				// The following code disables auto stretch.  Kept for reference.
				// scale draw area for a 1 to 1 pixel mapping with the draw target
				//float vScale = (float)fbHeight / (float)s_backbuffer_height;
				//float hScale = (float)fbWidth / (float)s_backbuffer_width;
				//drawRc.top *= vScale;
				//drawRc.bottom *= vScale;
				//drawRc.left *= hScale;
				//drawRc.right *= hScale;
			}

			xfbSource->Draw(sourceRc, drawRc, 0, 0);
		}
	}
	else
	{
		TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc);

		// TODO: Improve sampling algorithm for the pixel shader so that we can use the multisampled EFB texture as source
		D3DTexture2D* read_texture = FramebufferManager::GetResolvedEFBColorTexture();
		D3D::drawShadedTexQuad(read_texture->GetSRV(), targetRc.AsRECT(), Renderer::GetTargetWidth(), Renderer::GetTargetHeight(), PixelShaderCache::GetColorCopyProgram(false),VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), Gamma);
	}

	// done with drawing the game stuff, good moment to save a screenshot
	if (s_bScreenshot)
	{
		SaveScreenshot(s_sScreenshotName, GetTargetRectangle());
		s_bScreenshot = false;
	}

	// Dump frames
	static int w = 0, h = 0;
	if (g_ActiveConfig.bDumpFrames)
	{
		static int s_recordWidth;
		static int s_recordHeight;

		if (!s_screenshot_texture)
			CreateScreenshotTexture();

		D3D::context->CopyResource(s_screenshot_texture, (ID3D11Resource*)D3D::GetBackBuffer()->GetTex());
		if (!bLastFrameDumped)
		{
			s_recordWidth = GetTargetRectangle().GetWidth();
			s_recordHeight = GetTargetRectangle().GetHeight();
			bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), s_recordWidth, s_recordHeight);
			if (!bAVIDumping)
			{
				PanicAlert("Error dumping frames to AVI.");
			}
			else
			{
				char msg [255];
				sprintf_s(msg,255, "Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
						File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), s_recordWidth, s_recordHeight);
				OSD::AddMessage(msg, 2000);
			}
		}
		if (bAVIDumping)
		{
			D3D11_MAPPED_SUBRESOURCE map;
			D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ, 0, &map);

			if (!frame_data || w != s_recordWidth || h != s_recordHeight)
			{
				delete[] frame_data;
				frame_data = new char[3 * s_recordWidth * s_recordHeight];
				w = s_recordWidth;
				h = s_recordHeight;
			}
			char* source_ptr = (char*)map.pData + GetTargetRectangle().left*4 + GetTargetRectangle().top*map.RowPitch;
			formatBufferDump(source_ptr, frame_data, s_recordWidth, s_recordHeight, map.RowPitch);
			AVIDump::AddFrame(frame_data);
			D3D::context->Unmap(s_screenshot_texture, 0);
		}
		bLastFrameDumped = true;
	}
	else
	{
		if (bLastFrameDumped && bAVIDumping)
		{
			SAFE_DELETE_ARRAY(frame_data);
			w = h = 0;

			AVIDump::Stop();
			bAVIDumping = false;
			OSD::AddMessage("Stop dumping frames to AVI", 2000);
		}
		bLastFrameDumped = false;
	}

	// Finish up the current frame, print some stats
	if (g_ActiveConfig.bShowFPS)
	{
		char fps[20];
		StringCchPrintfA(fps, 20, "FPS: %d\n", s_fps);
		D3D::font.DrawTextScaled(0, 0, 20, 0.0f, 0xFF00FFFF, fps);
	}

	if (SConfig::GetInstance().m_ShowLag)
	{
		char lag[10];
		StringCchPrintfA(lag, 1000, "Lag: %llu\n", Movie::g_currentLagCount);
		D3D::font.DrawTextScaled(0, 18, 20, 0.0f, 0xFF00FFFF, lag);
	}

	if (g_ActiveConfig.bShowInputDisplay)
	{
		char inputDisplay[1000];
		StringCchPrintfA(inputDisplay, 1000, Movie::GetInputDisplay().c_str());
		D3D::font.DrawTextScaled(0, 36, 20, 0.0f, 0xFF00FFFF, inputDisplay);
	}
	Renderer::DrawDebugText();

	if (g_ActiveConfig.bOverlayStats)
	{
		char buf[32768];
		Statistics::ToString(buf);
		D3D::font.DrawTextScaled(0, 36, 20, 0.0f, 0xFF00FFFF, buf);
	}
	else if (g_ActiveConfig.bOverlayProjStats)
	{
		char buf[32768];
		Statistics::ToStringProj(buf);
		D3D::font.DrawTextScaled(0, 36, 20, 0.0f, 0xFF00FFFF, buf);
	}

	OSD::DrawMessages();
	D3D::EndFrame();
	frameCount++;

	GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);

	DLCache::ProgressiveCleanup();
	TextureCache::Cleanup();

	// Enable configuration changes
	UpdateActiveConfig();
	TextureCache::OnConfigChanged(g_ActiveConfig);

	SetWindowSize(fbWidth, fbHeight);

	const bool windowResized = CheckForResize();

	bool xfbchanged = false;

	if (FramebufferManagerBase::LastXfbWidth() != fbWidth || FramebufferManagerBase::LastXfbHeight() != fbHeight)
	{
		xfbchanged = true;
		unsigned int w = (fbWidth < 1 || fbWidth > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbWidth;
		unsigned int h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight;
		FramebufferManagerBase::SetLastXfbWidth(w);
		FramebufferManagerBase::SetLastXfbHeight(h);
	}

	// update FPS counter
	if (XFBWrited)
		s_fps = UpdateFPSCounter();

	// Begin new frame
	// Set default viewport and scissor, for the clear to work correctly
	// New frame
	stats.ResetFrame();

	// Flip/present backbuffer to frontbuffer here
	D3D::Present();

	// resize the back buffers NOW to avoid flickering
	if (xfbchanged ||
		windowResized ||
		s_LastEFBScale != g_ActiveConfig.iEFBScale ||
		s_LastAA != g_ActiveConfig.iMultisampleMode)
	{
		s_LastAA = g_ActiveConfig.iMultisampleMode;
		PixelShaderCache::InvalidateMSAAShaders();

		if (windowResized)
		{
			// TODO: Aren't we still holding a reference to the back buffer right now?
			D3D::Reset();
			SAFE_RELEASE(s_screenshot_texture);
			s_backbuffer_width = D3D::GetBackBufferWidth();
			s_backbuffer_height = D3D::GetBackBufferHeight();
		}

		UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);

		s_LastEFBScale = g_ActiveConfig.iEFBScale;
		CalculateTargetSize(s_backbuffer_width, s_backbuffer_height);

		D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), NULL);

		delete g_framebuffer_manager;
		g_framebuffer_manager = new FramebufferManager;
		float clear_col[4] = { 0.f, 0.f, 0.f, 1.f };
		D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), clear_col);
		D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 1.f, 0);
	}

	// begin next frame
	Renderer::RestoreAPIState();
	D3D::BeginFrame();
	D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
	VertexShaderManager::SetViewportChanged();

	Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
	XFBWrited = false;
}

// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
	D3D::stateman->PushBlendState(resetblendstate);
	D3D::stateman->PushDepthState(resetdepthstate);
	D3D::stateman->PushRasterizerState(resetraststate);
}

void Renderer::RestoreAPIState()
{
	// Gets us back into a more game-like state.
	D3D::stateman->PopBlendState();
	D3D::stateman->PopDepthState();
	D3D::stateman->PopRasterizerState();
	VertexShaderManager::SetViewportChanged();
	BPFunctions::SetScissor();
}

void Renderer::ApplyState(bool bUseDstAlpha)
{
	HRESULT hr;

	if (bUseDstAlpha)
	{
		// Colors should blend against SRC1_ALPHA
		if (gx_state.blenddc.RenderTarget[0].SrcBlend == D3D11_BLEND_SRC_ALPHA)
			gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC1_ALPHA;
		else if (gx_state.blenddc.RenderTarget[0].SrcBlend == D3D11_BLEND_INV_SRC_ALPHA)
			gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_SRC1_ALPHA;

		// Colors should blend against SRC1_ALPHA
		if (gx_state.blenddc.RenderTarget[0].DestBlend == D3D11_BLEND_SRC_ALPHA)
			gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_SRC1_ALPHA;
		else if (gx_state.blenddc.RenderTarget[0].DestBlend == D3D11_BLEND_INV_SRC_ALPHA)
			gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC1_ALPHA;

		gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
		gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
		gx_state.blenddc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
	}

	ID3D11BlendState* blstate;
	hr = D3D::device->CreateBlendState(&gx_state.blenddc, &blstate);
	if (FAILED(hr)) PanicAlert("Failed to create blend state at %s %d\n", __FILE__, __LINE__);
	D3D::stateman->PushBlendState(blstate);
	D3D::SetDebugObjectName((ID3D11DeviceChild*)blstate, "blend state used to emulate the GX pipeline");
	SAFE_RELEASE(blstate);

	ID3D11DepthStencilState* depth_state;
	hr = D3D::device->CreateDepthStencilState(&gx_state.depthdc, &depth_state);
	if (SUCCEEDED(hr)) D3D::SetDebugObjectName((ID3D11DeviceChild*)depth_state, "depth-stencil state used to emulate the GX pipeline");
	else PanicAlert("Failed to create depth state at %s %d\n", __FILE__, __LINE__);
	D3D::stateman->PushDepthState(depth_state);
	SAFE_RELEASE(depth_state);

	gx_state.rastdc.FillMode = (g_ActiveConfig.bWireFrame) ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
	ID3D11RasterizerState* raststate;
	hr = D3D::device->CreateRasterizerState(&gx_state.rastdc, &raststate);
	if (FAILED(hr)) PanicAlert("Failed to create rasterizer state at %s %d\n", __FILE__, __LINE__);
	D3D::SetDebugObjectName((ID3D11DeviceChild*)raststate, "rasterizer state used to emulate the GX pipeline");
	D3D::stateman->PushRasterizerState(raststate);
	SAFE_RELEASE(raststate);

	ID3D11SamplerState* samplerstate[8];
	for (unsigned int stage = 0; stage < 8; stage++)
	{
		// TODO: unnecessary state changes, we should store a list of shader resources
		//if (shader_resources[stage])
		{
			if(g_ActiveConfig.iMaxAnisotropy > 0) gx_state.sampdc[stage].Filter = D3D11_FILTER_ANISOTROPIC;
			hr = D3D::device->CreateSamplerState(&gx_state.sampdc[stage], &samplerstate[stage]);
			if (FAILED(hr)) PanicAlert("Fail %s %d, stage=%d\n", __FILE__, __LINE__, stage);
			else D3D::SetDebugObjectName((ID3D11DeviceChild*)samplerstate[stage], "sampler state used to emulate the GX pipeline");
		}
		// else samplerstate[stage] = NULL;
	}
	D3D::context->PSSetSamplers(0, 8, samplerstate);
	for (unsigned int stage = 0; stage < 8; stage++)
		SAFE_RELEASE(samplerstate[stage]);

	D3D::stateman->Apply();

	if (bUseDstAlpha)
	{
		// restore actual state
		SetBlendMode(false);
		SetLogicOpMode();
	}

	D3D::context->PSSetConstantBuffers(0, 1, &PixelShaderCache::GetConstantBuffer());
	D3D::context->VSSetConstantBuffers(0, 1, &VertexShaderCache::GetConstantBuffer());

	D3D::context->PSSetShader(PixelShaderCache::GetActiveShader(), NULL, 0);
	D3D::context->VSSetShader(VertexShaderCache::GetActiveShader(), NULL, 0);
}

void Renderer::RestoreState()
{
	ID3D11ShaderResourceView* shader_resources[8] = { NULL };
	D3D::context->PSSetShaderResources(0, 8, shader_resources);

	D3D::stateman->PopBlendState();
	D3D::stateman->PopDepthState();
	D3D::stateman->PopRasterizerState();
}

void Renderer::ApplyCullDisable()
{
	D3D11_RASTERIZER_DESC rastDesc = gx_state.rastdc;
	rastDesc.CullMode = D3D11_CULL_NONE;

	ID3D11RasterizerState* raststate;
	HRESULT hr = D3D::device->CreateRasterizerState(&rastDesc, &raststate);
	if (FAILED(hr)) PanicAlert("Failed to create culling-disabled rasterizer state at %s %d\n", __FILE__, __LINE__);
	D3D::SetDebugObjectName((ID3D11DeviceChild*)raststate, "rasterizer state (culling disabled) used to emulate the GX pipeline");

	D3D::stateman->PushRasterizerState(raststate);
	SAFE_RELEASE(raststate);

	D3D::stateman->Apply();
}

void Renderer::RestoreCull()
{
	D3D::stateman->PopRasterizerState();
}

void Renderer::SetGenerationMode()
{
	// rastdc.FrontCounterClockwise must be false for this to work
	gx_state.rastdc.CullMode = d3dCullModes[bpmem.genMode.cullmode];
}

void Renderer::SetDepthMode()
{
	if (bpmem.zmode.testenable)
	{
		gx_state.depthdc.DepthEnable = TRUE;
		gx_state.depthdc.DepthWriteMask = bpmem.zmode.updateenable ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
		gx_state.depthdc.DepthFunc = d3dCmpFuncs[bpmem.zmode.func];
	}
	else
	{
		// if the test is disabled write is disabled too
		gx_state.depthdc.DepthEnable = FALSE;
		gx_state.depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
	}
}

void Renderer::SetLogicOpMode()
{
	if (bpmem.blendmode.logicopenable && bpmem.blendmode.logicmode != 3)
	{
		s_blendMode = 0;
		gx_state.blenddc.RenderTarget[0].BlendEnable = true;
		SetBlendOp(d3dLogicOps[bpmem.blendmode.logicmode]);
		SetSrcBlend(d3dLogicOpSrcFactors[bpmem.blendmode.logicmode]);
		SetDestBlend(d3dLogicOpDestFactors[bpmem.blendmode.logicmode]);
	}
	else
	{
		SetBlendMode(true);
	}
}

void Renderer::SetDitherMode()
{
	// TODO: Set dither mode to bpmem.blendmode.dither
}

void Renderer::SetLineWidth()
{
	// TODO
}

void Renderer::SetSamplerState(int stage, int texindex)
{
	const FourTexUnits &tex = bpmem.tex[texindex];
	const TexMode0 &tm0 = tex.texMode0[stage];
	const TexMode1 &tm1 = tex.texMode1[stage];
	
	unsigned int mip;
	mip = (tm0.min_filter == 8) ? TEXF_NONE:d3dMipFilters[tm0.min_filter & 3];
	if ((tm0.min_filter & 3) && (tm0.min_filter != 8) && ((tm1.max_lod >> 4) == 0)) mip = TEXF_NONE;

	if (texindex) stage += 4;

	// TODO: Clarify whether these values are correct
	// NOTE: since there's no "no filter" in DX11 we're using point filters in these cases
	if (g_ActiveConfig.bForceFiltering)
	{
		gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
	}
	else if (tm0.min_filter & 4) // linear min filter
	{
		if (tm0.mag_filter) // linear mag filter
		{
			if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT;
			else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT;
			else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
		}
		else // point mag filter
		{
			if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT;
			else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT;
			else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR;
		}
	}
	else // point min filter
	{
		if (tm0.mag_filter) // linear mag filter
		{
			if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT;
			else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT;
			else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR;
		}
		else // point mag filter
		{
			if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_POINT;
			else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_POINT;
			else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR;
		}
	}

	gx_state.sampdc[stage].AddressU = d3dClamps[tm0.wrap_s];
	gx_state.sampdc[stage].AddressV = d3dClamps[tm0.wrap_t];

	// When mipfilter is set to "none", just disable mipmapping altogether
	gx_state.sampdc[stage].MaxLOD = (mip == TEXF_NONE) ? 0.0f : (float)tm1.max_lod/16.f;
	gx_state.sampdc[stage].MinLOD = (float)tm1.min_lod/16.f;
	gx_state.sampdc[stage].MipLODBias = (float)tm0.lod_bias/32.0f;
}

void Renderer::SetInterlacingMode()
{
	// TODO
}

}  // namespace DX11