// Copyright 2013 Max Eliaser // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wregister" #include #pragma GCC diagnostic pop #include #include #include #include #include "InputCommon/ControllerInterface/Xlib/XInput2.h" #include "Common/StringUtil.h" // This is an input plugin using the XInput 2.0 extension to the X11 protocol, // loosely based on the old XLib plugin. (Has nothing to do with the XInput // API on Windows.) // This plugin creates one KeyboardMouse object for each master pointer/ // keyboard pair. Each KeyboardMouse object exports four types of controls: // * Mouse button controls: hardcoded at 32 of them, but could be made to // support infinitely many mouse buttons in theory; XInput2 has no limit. // * Mouse cursor controls: one for each cardinal direction. Calculated by // comparing the absolute position of the mouse pointer on screen to the // center of the emulator window. // * Mouse axis controls: one for each cardinal direction. Calculated using // a running average of relative mouse motion on each axis. // * Key controls: these correspond to a limited subset of the keyboard // keys. // Mouse axis control tuning. Unlike absolute mouse position, relative mouse // motion data needs to be tweaked and smoothed out a bit to be usable. // Mouse axis control output is simply divided by this number. In practice, // that just means you can use a smaller "dead zone" if you bind axis controls // to a joystick. No real need to make this customizable. #define MOUSE_AXIS_SENSITIVITY 8.0f // The mouse axis controls use a weighted running average. Each frame, the new // value is the average of the old value and the amount of relative mouse // motion during that frame. The old value is weighted by a ratio of // MOUSE_AXIS_SMOOTHING:1 compared to the new value. Increasing // MOUSE_AXIS_SMOOTHING makes the controls smoother, decreasing it makes them // more responsive. This might be useful as a user-customizable option. #define MOUSE_AXIS_SMOOTHING 1.5f namespace ciface::XInput2 { // This function will add zero or more KeyboardMouse objects to devices. void PopulateDevices(void* const hwnd) { Display* dpy = XOpenDisplay(nullptr); // xi_opcode is important; it will be used to identify XInput events by // the polling loop in UpdateInput. int xi_opcode, event, error; // verify that the XInput extension is available if (!XQueryExtension(dpy, "XInputExtension", &xi_opcode, &event, &error)) return; // verify that the XInput extension is at at least version 2.0 int major = 2, minor = 0; if (XIQueryVersion(dpy, &major, &minor) != Success) return; // register all master devices with Dolphin XIDeviceInfo* all_masters; XIDeviceInfo* current_master; int num_masters; all_masters = XIQueryDevice(dpy, XIAllMasterDevices, &num_masters); for (int i = 0; i < num_masters; i++) { current_master = &all_masters[i]; if (current_master->use == XIMasterPointer) { // Since current_master is a master pointer, its attachment must // be a master keyboard. g_controller_interface.AddDevice(std::make_shared( (Window)hwnd, xi_opcode, current_master->deviceid, current_master->attachment)); } } XCloseDisplay(dpy); XIFreeDeviceInfo(all_masters); } // Apply the event mask to the device and all its slaves. Only used in the // constructor. Remember, each KeyboardMouse has its own copy of the event // stream, which is how multiple event masks can "coexist." void KeyboardMouse::SelectEventsForDevice(XIEventMask* mask, int deviceid) { // Set the event mask for the master device. mask->deviceid = deviceid; XISelectEvents(m_display, DefaultRootWindow(m_display), mask, 1); // Query all the master device's slaves and set the same event mask for // those too. There are two reasons we want to do this. For mouse devices, // we want the raw motion events, and only slaves (i.e. physical hardware // devices) emit those. For keyboard devices, selecting slaves avoids // dealing with key focus. int num_slaves; XIDeviceInfo* const all_slaves = XIQueryDevice(m_display, XIAllDevices, &num_slaves); for (int i = 0; i < num_slaves; i++) { XIDeviceInfo* const slave = &all_slaves[i]; if ((slave->use != XISlavePointer && slave->use != XISlaveKeyboard) || slave->attachment != deviceid) { continue; } mask->deviceid = slave->deviceid; XISelectEvents(m_display, DefaultRootWindow(m_display), mask, 1); } XIFreeDeviceInfo(all_slaves); } KeyboardMouse::KeyboardMouse(Window window, int opcode, int pointer, int keyboard) : m_window(window), xi_opcode(opcode), pointer_deviceid(pointer), keyboard_deviceid(keyboard) { // The cool thing about each KeyboardMouse object having its own Display // is that each one gets its own separate copy of the X11 event stream, // which it can individually filter to get just the events it's interested // in. So be aware that each KeyboardMouse object actually has its own X11 // "context." m_display = XOpenDisplay(nullptr); // should always be 1 int unused; XIDeviceInfo* const pointer_device = XIQueryDevice(m_display, pointer_deviceid, &unused); name = std::string(pointer_device->name); XIFreeDeviceInfo(pointer_device); { unsigned char mask_buf[(XI_LASTEVENT + 7) / 8] = {}; XISetMask(mask_buf, XI_ButtonPress); XISetMask(mask_buf, XI_ButtonRelease); XISetMask(mask_buf, XI_RawMotion); XIEventMask mask; mask.mask = mask_buf; mask.mask_len = sizeof(mask_buf); SelectEventsForDevice(&mask, pointer_deviceid); } { unsigned char mask_buf[(XI_LASTEVENT + 7) / 8] = {}; XISetMask(mask_buf, XI_KeyPress); XISetMask(mask_buf, XI_KeyRelease); XISetMask(mask_buf, XI_FocusOut); XIEventMask mask; mask.mask = mask_buf; mask.mask_len = sizeof(mask_buf); SelectEventsForDevice(&mask, keyboard_deviceid); } // Keyboard Keys int min_keycode, max_keycode; XDisplayKeycodes(m_display, &min_keycode, &max_keycode); for (int i = min_keycode; i <= max_keycode; ++i) { Key* const temp_key = new Key(m_display, i, m_state.keyboard.data()); if (temp_key->m_keyname.length()) AddInput(temp_key); else delete temp_key; } // Add combined left/right modifiers with consistent naming across platforms. AddCombinedInput("Alt", {"Alt_L", "Alt_R"}); AddCombinedInput("Shift", {"Shift_L", "Shift_R"}); AddCombinedInput("Ctrl", {"Control_L", "Control_R"}); // Mouse Buttons for (int i = 0; i < 32; i++) AddInput(new Button(i, &m_state.buttons)); // Mouse Cursor, X-/+ and Y-/+ for (int i = 0; i != 4; ++i) AddInput(new Cursor(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.cursor.y : &m_state.cursor.x)); // Mouse Axis, X-/+ and Y-/+ for (int i = 0; i != 4; ++i) AddInput(new Axis(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.axis.y : &m_state.axis.x)); } KeyboardMouse::~KeyboardMouse() { XCloseDisplay(m_display); } // Update the mouse cursor controls void KeyboardMouse::UpdateCursor() { double root_x, root_y, win_x, win_y; Window root, child; // unused-- we're not interested in button presses here, as those are // updated using events XIButtonState button_state; XIModifierState mods; XIGroupState group; XIQueryPointer(m_display, pointer_deviceid, m_window, &root, &child, &root_x, &root_y, &win_x, &win_y, &button_state, &mods, &group); free(button_state.mask); XWindowAttributes win_attribs; XGetWindowAttributes(m_display, m_window, &win_attribs); const auto window_scale = g_controller_interface.GetWindowInputScale(); // the mouse position as a range from -1 to 1 m_state.cursor.x = (win_x / std::max(win_attribs.width, 1) * 2 - 1) * window_scale.x; m_state.cursor.y = (win_y / std::max(win_attribs.height, 1) * 2 - 1) * window_scale.y; } void KeyboardMouse::UpdateInput() { XFlush(m_display); // for the axis controls float delta_x = 0.0f, delta_y = 0.0f; double delta_delta; bool mouse_moved = false; // Iterate through the event queue - update the axis controls, mouse // button controls, and keyboard controls. XEvent event; while (XPending(m_display)) { XNextEvent(m_display, &event); if (event.xcookie.type != GenericEvent) continue; if (event.xcookie.extension != xi_opcode) continue; if (!XGetEventData(m_display, &event.xcookie)) continue; // only one of these will get used XIDeviceEvent* dev_event = (XIDeviceEvent*)event.xcookie.data; XIRawEvent* raw_event = (XIRawEvent*)event.xcookie.data; switch (event.xcookie.evtype) { case XI_ButtonPress: m_state.buttons |= 1 << (dev_event->detail - 1); break; case XI_ButtonRelease: m_state.buttons &= ~(1 << (dev_event->detail - 1)); break; case XI_KeyPress: m_state.keyboard[dev_event->detail / 8] |= 1 << (dev_event->detail % 8); break; case XI_KeyRelease: m_state.keyboard[dev_event->detail / 8] &= ~(1 << (dev_event->detail % 8)); break; case XI_RawMotion: mouse_moved = true; // always safe because there is always at least one byte in // raw_event->valuators.mask, and if a bit is set in the mask, // then the value in raw_values is also available. if (XIMaskIsSet(raw_event->valuators.mask, 0)) { delta_delta = raw_event->raw_values[0]; // test for inf and nan if (delta_delta == delta_delta && 1 + delta_delta != delta_delta) delta_x += delta_delta; } if (XIMaskIsSet(raw_event->valuators.mask, 1)) { delta_delta = raw_event->raw_values[1]; // test for inf and nan if (delta_delta == delta_delta && 1 + delta_delta != delta_delta) delta_y += delta_delta; } break; case XI_FocusOut: // Clear keyboard state on FocusOut as we will not be receiving KeyRelease events. m_state.keyboard.fill(0); break; } XFreeEventData(m_display, &event.xcookie); } // apply axis smoothing m_state.axis.x *= MOUSE_AXIS_SMOOTHING; m_state.axis.x += delta_x; m_state.axis.x /= MOUSE_AXIS_SMOOTHING + 1.0f; m_state.axis.y *= MOUSE_AXIS_SMOOTHING; m_state.axis.y += delta_y; m_state.axis.y /= MOUSE_AXIS_SMOOTHING + 1.0f; // Get the absolute position of the mouse pointer if (mouse_moved) UpdateCursor(); // KeyRelease and FocusOut events are sometimes not received. // Cycling Alt-Tab and landing on the same window results in a stuck "Alt" key. // Unpressed keys are released here. std::array keyboard; XQueryKeymap(m_display, keyboard.data()); for (size_t i = 0; i != keyboard.size(); ++i) m_state.keyboard[i] &= keyboard[i]; } std::string KeyboardMouse::GetName() const { // This is the name string we got from the X server for this master // pointer/keyboard pair. return name; } std::string KeyboardMouse::GetSource() const { return "XInput2"; } KeyboardMouse::Key::Key(Display* const display, KeyCode keycode, const char* keyboard) : m_display(display), m_keyboard(keyboard), m_keycode(keycode) { int i = 0; KeySym keysym = 0; do { keysym = XkbKeycodeToKeysym(m_display, keycode, i, 0); i++; } while (keysym == NoSymbol && i < 8); // Convert to upper case for the keyname if (keysym >= 97 && keysym <= 122) keysym -= 32; // 0x0110ffff is the top of the unicode character range according // to keysymdef.h although it is probably more than we need. if (keysym == NoSymbol || keysym > 0x0110ffff || XKeysymToString(keysym) == nullptr) m_keyname = std::string(); else m_keyname = std::string(XKeysymToString(keysym)); } ControlState KeyboardMouse::Key::GetState() const { return (m_keyboard[m_keycode / 8] & (1 << (m_keycode % 8))) != 0; } KeyboardMouse::Button::Button(unsigned int index, unsigned int* buttons) : m_buttons(buttons), m_index(index) { name = fmt::format("Click {}", m_index + 1); } ControlState KeyboardMouse::Button::GetState() const { return ((*m_buttons & (1 << m_index)) != 0); } KeyboardMouse::Cursor::Cursor(u8 index, bool positive, const float* cursor) : m_cursor(cursor), m_index(index), m_positive(positive) { name = fmt::format("Cursor {}{}", static_cast('X' + m_index), (m_positive ? '+' : '-')); } ControlState KeyboardMouse::Cursor::GetState() const { return std::max(0.0f, *m_cursor / (m_positive ? 1.0f : -1.0f)); } KeyboardMouse::Axis::Axis(u8 index, bool positive, const float* axis) : m_axis(axis), m_index(index), m_positive(positive) { name = fmt::format("Axis {}{}", static_cast('X' + m_index), (m_positive ? '+' : '-')); } ControlState KeyboardMouse::Axis::GetState() const { return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY)); } } // namespace ciface::XInput2