// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // Additional copyrights go to Duddie and Tratax (c) 2004 #include "DSPInterpreter.h" #include "DSPIntCCUtil.h" #include "DSPIntUtil.h" // Arithmetic and accumulator control. namespace DSPInterpreter { // CLR $acR // 1000 r001 xxxx xxxx // Clears accumulator $acR void clr(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 11) & 0x1; dsp_set_long_acc(reg, 0); Update_SR_Register64((s64)0); // really? zeroWriteBackLog(); } // CLRL $acR.l // 1111 110r xxxx xxxx // Clears $acR.l - low 16 bits of accumulator $acR. void clrl(const UDSPInstruction& opc) { u16 reg = DSP_REG_ACL0 + ((opc.hex >> 8) & 0x1); g_dsp.r[reg] = 0; // Should this be 64bit? // nakee: it says the whole reg in duddie's doc sounds weird Update_SR_Register64((s64)reg); zeroWriteBackLog(); } // ADDAXL $acD, $axS.l // 0111 00sd xxxx xxxx // Adds secondary accumulator $axS.l to accumulator register $acD. void addaxl(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg); s64 acx = dsp_get_ax_l(sreg); acc += acx; zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // TSTAXH $axR.h // 1000 011r xxxx xxxx // Test high part of secondary accumulator $axR.h. void tstaxh(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 8) & 0x1; s16 val = dsp_get_ax_h(reg); Update_SR_Register16(val); zeroWriteBackLog(); } // SUB $acD, $ac(1-D) // 0101 110d xxxx xxxx // Subtracts accumulator $ac(1-D) from accumulator register $acD. void sub(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; s64 acc1 = dsp_get_long_acc(D); s64 acc2 = dsp_get_long_acc(1 - D); acc1 -= acc2; zeroWriteBackLog(); dsp_set_long_acc(D, acc1); Update_SR_Register64(acc1); } // MOVR $acD, $axS.R // 0110 0srd xxxx xxxx // Moves register $axS.R (sign extended) to middle accumulator $acD.hm. // Sets $acD.l to 0. // TODO: Check what happens to acD.h. void movr(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0; s64 acc = (s16)g_dsp.r[sreg]; acc <<= 16; acc &= ~0xffff; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // MOVAX $acD, $axS // 0110 10sd xxxx xxxx // Moves secondary accumulator $axS to accumulator $axD. void movax(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; u8 sreg = (opc.hex >> 9) & 0x1; s64 acx = dsp_get_long_acx(sreg); zeroWriteBackLog(); dsp_set_long_acc(dreg, acx); Update_SR_Register64(acx); } // XORR $acD.m, $axS.h // 0011 00sd xxxx xxxx // Logic XOR (exclusive or) middle part of accumulator $acD.m with // high part of secondary accumulator $axS.h. void xorr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; u16 axh = g_dsp.r[DSP_REG_AXH0 + sreg]; zeroWriteBackLog(); g_dsp.r[DSP_REG_ACM0 + dreg] ^= axh; s64 acc = dsp_get_long_acc(dreg); Update_SR_Register64(acc); } // ANDR $acD.m, $axS.h // 0011 01sd xxxx xxxx // Logic AND middle part of accumulator $acD.m with high part of // secondary accumulator $axS.h. void andr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; u16 axh = g_dsp.r[DSP_REG_AXH0 + sreg]; zeroWriteBackLog(); g_dsp.r[DSP_REG_ACM0 + dreg] &= axh; s64 acc = dsp_get_long_acc(dreg); Update_SR_Register64(acc); } // ORR $acD.m, $axS.h // 0011 10sd xxxx xxxx // Logic OR middle part of accumulator $acD.m with high part of // secondary accumulator $axS.h. void orr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; u16 axh = g_dsp.r[DSP_REG_AXH0 + sreg]; zeroWriteBackLog(); g_dsp.r[DSP_REG_ACM0 + dreg] |= axh; s64 acc = dsp_get_long_acc(dreg); Update_SR_Register64(acc); } // FIXME: How does it fit what we know about andc'ls // ANDC $acD.m, $ac(1-D).m // 0011 110d xxxx xxxx // Logic AND middle part of accumulator $acD.m with middle part of // accumulator $ac(1-D).m void andc(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; u16 accm = dsp_get_acc_m(1-D); zeroWriteBackLog(); g_dsp.r[DSP_REG_ACM0+D] &= accm; Update_SR_Register16(dsp_get_acc_m(D)); } // FIXME: How does it fit what we know about orc'ls // ORC $acD.m, $ac(1-D).m // 0011 111d xxxx xxxx // Logic OR middle part of accumulator $acD.m with middle part of // accumulator $ac(1-D).m. void orc(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; u16 accm = dsp_get_acc_m(1-D); zeroWriteBackLog(); g_dsp.r[DSP_REG_ACM0+D] |= accm; Update_SR_Register16(dsp_get_acc_m(D)); } void orf(const UDSPInstruction& opc) { ERROR_LOG(DSPLLE, "orf not implemented"); } // Hermes switched andf and andcf, so check to make sure they are still correct // ANDCF $acD.m, #I // 0000 001r 1100 0000 // iiii iiii iiii iiii // Set logic zero (LZ) flag in status register $sr if result of logic AND of // accumulator mid part $acD.m with immediate value I is equal I. void andcf(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 8) & 0x1; u16 imm = dsp_fetch_code(); u16 val = dsp_get_acc_m(reg); Update_SR_LZ(((val & imm) == imm) ? 0 : 1); } // Hermes switched andf and andcf, so check to make sure they are still correct // ANDF $acD.m, #I // 0000 001r 1010 0000 // iiii iiii iiii iiii // Set logic zero (LZ) flag in status register $sr if result of logical AND // operation of accumulator mid part $acD.m with immediate value I is equal // immediate value 0. void andf(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 8) & 0x1; u16 imm = dsp_fetch_code(); u16 val = dsp_get_acc_m(reg); Update_SR_LZ(((val & imm) == 0) ? 0 : 1); } // CMPI $amD, #I // 0000 001r 1000 0000 // iiii iiii iiii iiii // Compares mid accumulator $acD.hm ($amD) with sign extended immediate value I. // Although flags are being set regarding whole accumulator register. void cmpi(const UDSPInstruction& opc) { int reg = (opc.hex >> 8) & 0x1; // Immediate is considered to be at M level in the 40-bit accumulator. s64 imm = (s64)(s16)dsp_fetch_code() << 16; s64 val = dsp_get_long_acc(reg); Update_SR_Register64(val - imm); } // XORI $acD.m, #I // 0000 001r 0010 0000 // iiii iiii iiii iiii // Logic exclusive or (XOR) of accumulator mid part $acD.m with // immediate value I. void xori(const UDSPInstruction& opc) { u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1); u16 imm = dsp_fetch_code(); g_dsp.r[reg] ^= imm; Update_SR_Register16((s16)g_dsp.r[reg]); } // ANDI $acD.m, #I // 0000 001r 0100 0000 // iiii iiii iiii iiii // Logic AND of accumulator mid part $acD.m with immediate value I. void andi(const UDSPInstruction& opc) { u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1); u16 imm = dsp_fetch_code(); g_dsp.r[reg] &= imm; Update_SR_Register16((s16)g_dsp.r[reg]); } // ORI $acD.m, #I // 0000 001r 0110 0000 // iiii iiii iiii iiii // Logic OR of accumulator mid part $acD.m with immediate value I. void ori(const UDSPInstruction& opc) { u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1); u16 imm = dsp_fetch_code(); g_dsp.r[reg] |= imm; Update_SR_Register16((s16)g_dsp.r[reg]); } //------------------------------------------------------------- // ADD $acD, $ac(1-D) // 0100 110d xxxx xxxx // Adds accumulator $ac(1-D) to accumulator register $acD. void add(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc0 = dsp_get_long_acc(0); s64 acc1 = dsp_get_long_acc(1); s64 res = acc0 + acc1; zeroWriteBackLog(); dsp_set_long_acc(areg, res); Update_SR_Register64(res); } // ADDP $acD // 0100 111d xxxx xxxx // Adds product register to accumulator register. void addp(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg); acc += dsp_get_long_prod(); zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // SUBP $acD // 0101 111d xxxx xxxx // Subtracts product register from accumulator register. void subp(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg); acc -= dsp_get_long_prod(); zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // CMPIS $acD, #I // 0000 011d iiii iiii // Compares accumulator with short immediate. Comaprison is executed // by subtracting short immediate (8bit sign extended) from mid accumulator // $acD.hm and computing flags based on whole accumulator $acD. void cmpis(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(areg); s64 val = (s8)opc.hex; val <<= 16; s64 res = acc - val; Update_SR_Register64(res); } // DECM $acsD // 0111 100d xxxx xxxx // Decrement 24-bit mid-accumulator $acsD. void decm(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x01; s64 sub = 0x10000; s64 acc = dsp_get_long_acc(dreg); acc -= sub; zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // DEC $acD // 0111 101d xxxx xxxx // Decrement accumulator $acD. void dec(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x01; s64 acc = dsp_get_long_acc(dreg) - 1; zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // INCM $acsD // 0111 010d xxxx xxxx // Increment 24-bit mid-accumulator $acsD. void incm(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 sub = 0x10000; s64 acc = dsp_get_long_acc(dreg); acc += sub; zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // INC $acD // 0111 011d xxxx xxxx // Increment accumulator $acD. void inc(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg) + 1; zeroWriteBackLog(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // NEG $acD // 0111 110d xxxx xxxx // Negate accumulator $acD. void neg(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(areg); acc = 0 - acc; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // MOV $acD, $ac(1-D) // 0110 110d xxxx xxxx // Moves accumulator $ax(1-D) to accumulator $axD. void mov(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; u64 acc = dsp_get_long_acc(1 - D); zeroWriteBackLog(); dsp_set_long_acc(D, acc); Update_SR_Register64(acc); } // ADDAX $acD, $axS // 0100 10sd xxxx xxxx // Adds secondary accumulator $axS to accumulator register $acD. void addax(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = (opc.hex >> 9) & 0x1; s64 ax = dsp_get_long_acx(sreg); s64 acc = dsp_get_long_acc(areg); acc += ax; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // ADDR $acD.M, $axS.L // 0100 0ssd xxxx xxxx // Adds register $axS.L to accumulator $acD.M register. void addr(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0; s64 ax = (s16)g_dsp.r[sreg]; ax <<= 16; s64 acc = dsp_get_long_acc(areg); acc += ax; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // SUBR $acD.M, $axS.L // 0101 0ssd xxxx xxxx // Subtracts register $axS.L from accumulator $acD.M register. void subr(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0; s64 ax = (s16)g_dsp.r[sreg]; ax <<= 16; s64 acc = dsp_get_long_acc(areg); acc -= ax; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // SUBAX $acD, $axS // 0101 10sd xxxx xxxx // Subtracts secondary accumulator $axS from accumulator register $acD. void subax(const UDSPInstruction& opc) { int regD = (opc.hex >> 8) & 0x1; int regS = (opc.hex >> 9) & 0x1; s64 acc = dsp_get_long_acc(regD) - dsp_get_long_acx(regS); zeroWriteBackLog(); dsp_set_long_acc(regD, acc); Update_SR_Register64(acc); } // ADDIS $acD, #I // 0000 010d iiii iiii // Adds short immediate (8-bit sign extended) to mid accumulator $acD.hm. void addis(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 Imm = (s8)(u8)opc.hex; Imm <<= 16; s64 acc = dsp_get_long_acc(areg); acc += Imm; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // ADDI $amR, #I // 0000 001r 0000 0000 // iiii iiii iiii iiii // Adds immediate (16-bit sign extended) to mid accumulator $acD.hm. void addi(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 sub = (s16)dsp_fetch_code(); sub <<= 16; s64 acc = dsp_get_long_acc(areg); acc += sub; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // LSL16 $acR // 1111 000r xxxx xxxx // Logically shifts left accumulator $acR by 16. void lsl16(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(areg); acc <<= 16; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // LSR16 $acR // 1111 010r xxxx xxxx // Logically shifts right accumulator $acR by 16. void lsr16(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u64 acc = dsp_get_long_acc(areg); acc >>= 16; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // ASR16 $acR // 1001 r001 xxxx xxxx // Arithmetically shifts right accumulator $acR by 16. void asr16(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 11) & 0x1; s64 acc = dsp_get_long_acc(areg); acc >>= 16; zeroWriteBackLog(); dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // LSL $acR, #I // 0001 010r 00ii iiii // Logically shifts left accumulator $acR by number specified by value I. void lsl(const UDSPInstruction& opc) { u16 shift = opc.ushift; u64 acc = dsp_get_long_acc(opc.areg); acc <<= shift; dsp_set_long_acc(opc.areg, acc); Update_SR_Register64(acc); } // LSR $acR, #I // 0001 010r 01ii iiii // Logically shifts left accumulator $acR by number specified by value // calculated by negating sign extended bits 0-6. void lsr(const UDSPInstruction& opc) { u16 shift = (u16) -(((s8)(opc.ushift << 2)) >> 2); u64 acc = dsp_get_long_acc(opc.areg); // Lop off the extraneous sign extension our 64-bit fake accum causes acc &= 0x000000FFFFFFFFFFULL; acc >>= shift; dsp_set_long_acc(opc.areg, (s64)acc); Update_SR_Register64(acc); } // ASL $acR, #I // 0001 010r 10ii iiii // Logically shifts left accumulator $acR by number specified by value I. void asl(const UDSPInstruction& opc) { u16 shift = opc.ushift; // arithmetic shift u64 acc = dsp_get_long_acc(opc.areg); acc <<= shift; dsp_set_long_acc(opc.areg, acc); Update_SR_Register64(acc); } // ASR $acR, #I // 0001 010r 11ii iiii // Arithmetically shifts right accumulator $acR by number specified by // value calculated by negating sign extended bits 0-6. void asr(const UDSPInstruction& opc) { u16 shift = (u16) -(((s8)(opc.ushift << 2)) >> 2); // arithmetic shift s64 acc = dsp_get_long_acc(opc.areg); acc >>= shift; dsp_set_long_acc(opc.areg, acc); Update_SR_Register64(acc); } // (NEW) // LSRN (fixed parameters) // 0000 0010 1100 1010 // Logically shifts right accumulator $ACC0 by signed 16-bit value $AC1.M // (if value negative, becomes left shift). void lsrn(const UDSPInstruction& opc) { s16 shift = dsp_get_acc_m(1); u64 acc = dsp_get_long_acc(0); // Lop off the extraneous sign extension our 64-bit fake accum causes acc &= 0x000000FFFFFFFFFFULL; if (shift > 0) { acc >>= shift; } else if (shift < 0) { acc <<= -shift; } dsp_set_long_acc(0, (s64)acc); Update_SR_Register64(acc); } // (NEW) // ASRN (fixed parameters) // 0000 0010 1100 1011 // Arithmetically shifts right accumulator $ACC0 by signed 16-bit value $AC1.M // (if value negative, becomes left shift). void asrn(const UDSPInstruction& opc) { s16 shift = dsp_get_acc_m(1); s64 acc = dsp_get_long_acc(0); if (shift > 0) { acc >>= shift; } else if (shift < 0) { acc <<= -shift; } dsp_set_long_acc(0, acc); Update_SR_Register64(acc); } // LSRNR $acR // 0011 110d 1100 0000 // Logically shifts right accumulator $ACC0 by signed 16-bit value $AC0.M // Not described by Duddie's doc - at least not as a separate instruction. void lsrnr(const UDSPInstruction& opc) { u8 sreg = 1;//Check if it should be (opc.hex >> 8) & 0x1; s16 shift = dsp_get_acc_m(0); u64 acc = dsp_get_long_acc(sreg); acc &= 0x000000FFFFFFFFFFULL; if (shift > 0) { acc <<= shift; } else if (shift < 0) { acc >>= -shift; } dsp_set_long_acc(sreg, acc); Update_SR_Register64(acc); } // CMPAR $acS axR.h // 1100 0001 xxxx xxxx // Compares accumulator $acS with accumulator axR.h. // Not described by Duddie's doc - at least not as a separate instruction. void cmpar(const UDSPInstruction& opc) { u8 rreg = ((opc.hex >> 12) & 0x1) + DSP_REG_AXH0; u8 sreg = (opc.hex >> 11) & 0x1; // we compare s64 rr = (s16)g_dsp.r[rreg]; rr <<= 16; s64 sr = dsp_get_long_acc(sreg); Update_SR_Register64(sr - rr); zeroWriteBackLog(); } // CMP // 1000 0010 xxxx xxxx // Compares accumulator $ac0 with accumulator $ac1. void cmp(const UDSPInstruction& opc) { s64 acc0 = dsp_get_long_acc(0); s64 acc1 = dsp_get_long_acc(1); Update_SR_Register64(acc0 - acc1); zeroWriteBackLog(); } // TST // 1011 r001 xxxx xxxx // Test accumulator %acR. void tst(const UDSPInstruction& opc) { s8 reg = (opc.hex >> 11) & 0x1; s64 acc = dsp_get_long_acc(reg); Update_SR_Register64(acc); zeroWriteBackLog(); } } // namespace