// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "AudioCommon/DPL2Decoder.h" #include "AudioCommon/PulseAudioStream.h" #include "Common/CommonTypes.h" #include "Common/Thread.h" #include "Core/ConfigManager.h" namespace { const size_t BUFFER_SAMPLES = 512; // ~10 ms - needs to be at least 240 for surround } PulseAudio::PulseAudio() : m_thread() , m_run_thread() { } bool PulseAudio::Start() { m_stereo = !SConfig::GetInstance().m_LocalCoreStartupParameter.bDPL2Decoder; m_channels = m_stereo ? 2 : 5; // will tell PA we use a Stereo or 5.0 channel setup NOTICE_LOG(AUDIO, "PulseAudio backend using %d channels", m_channels); m_run_thread = true; m_thread = std::thread(&PulseAudio::SoundLoop, this); // Initialize DPL2 parameters DPL2Reset(); return true; } void PulseAudio::Stop() { m_run_thread = false; m_thread.join(); } void PulseAudio::Update() { // don't need to do anything here. } // Called on audio thread. void PulseAudio::SoundLoop() { Common::SetCurrentThreadName("Audio thread - pulse"); if (PulseInit()) { while (m_run_thread.load() && m_pa_connected == 1 && m_pa_error >= 0) m_pa_error = pa_mainloop_iterate(m_pa_ml, 1, nullptr); if (m_pa_error < 0) ERROR_LOG(AUDIO, "PulseAudio error: %s", pa_strerror(m_pa_error)); PulseShutdown(); } } bool PulseAudio::PulseInit() { m_pa_error = 0; m_pa_connected = 0; // create pulseaudio main loop and context // also register the async state callback which is called when the connection to the pa server has changed m_pa_ml = pa_mainloop_new(); m_pa_mlapi = pa_mainloop_get_api(m_pa_ml); m_pa_ctx = pa_context_new(m_pa_mlapi, "dolphin-emu"); m_pa_error = pa_context_connect(m_pa_ctx, nullptr, PA_CONTEXT_NOFLAGS, nullptr); pa_context_set_state_callback(m_pa_ctx, StateCallback, this); // wait until we're connected to the pulseaudio server while (m_pa_connected == 0 && m_pa_error >= 0) m_pa_error = pa_mainloop_iterate(m_pa_ml, 1, nullptr); if (m_pa_connected == 2 || m_pa_error < 0) { ERROR_LOG(AUDIO, "PulseAudio failed to initialize: %s", pa_strerror(m_pa_error)); return false; } // create a new audio stream with our sample format // also connect the callbacks for this stream pa_sample_spec ss; pa_channel_map channel_map; pa_channel_map* channel_map_p = nullptr; // auto channel map if (m_stereo) { ss.format = PA_SAMPLE_S16LE; m_bytespersample = sizeof(s16); } else { // surround is remixed in floats, use a float PA buffer to save another conversion ss.format = PA_SAMPLE_FLOAT32NE; m_bytespersample = sizeof(float); channel_map_p = &channel_map; // explicit channel map: channel_map.channels = 5; channel_map.map[0] = PA_CHANNEL_POSITION_FRONT_LEFT; channel_map.map[1] = PA_CHANNEL_POSITION_FRONT_RIGHT; channel_map.map[2] = PA_CHANNEL_POSITION_FRONT_CENTER; channel_map.map[3] = PA_CHANNEL_POSITION_REAR_LEFT; channel_map.map[4] = PA_CHANNEL_POSITION_REAR_RIGHT; } ss.channels = m_channels; ss.rate = m_mixer->GetSampleRate(); assert(pa_sample_spec_valid(&ss)); m_pa_s = pa_stream_new(m_pa_ctx, "Playback", &ss, channel_map_p); pa_stream_set_write_callback(m_pa_s, WriteCallback, this); pa_stream_set_underflow_callback(m_pa_s, UnderflowCallback, this); // connect this audio stream to the default audio playback // limit buffersize to reduce latency m_pa_ba.fragsize = -1; m_pa_ba.maxlength = -1; // max buffer, so also max latency m_pa_ba.minreq = -1; // don't read every byte, try to group them _a bit_ m_pa_ba.prebuf = -1; // start as early as possible m_pa_ba.tlength = BUFFER_SAMPLES * m_channels * m_bytespersample; // designed latency, only change this flag for low latency output pa_stream_flags flags = pa_stream_flags(PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE); m_pa_error = pa_stream_connect_playback(m_pa_s, nullptr, &m_pa_ba, flags, nullptr, nullptr); if (m_pa_error < 0) { ERROR_LOG(AUDIO, "PulseAudio failed to initialize: %s", pa_strerror(m_pa_error)); return false; } INFO_LOG(AUDIO, "Pulse successfully initialized"); return true; } void PulseAudio::PulseShutdown() { pa_context_disconnect(m_pa_ctx); pa_context_unref(m_pa_ctx); pa_mainloop_free(m_pa_ml); } void PulseAudio::StateCallback(pa_context* c) { pa_context_state_t state = pa_context_get_state(c); switch (state) { case PA_CONTEXT_FAILED: case PA_CONTEXT_TERMINATED: m_pa_connected = 2; break; case PA_CONTEXT_READY: m_pa_connected = 1; break; default: break; } } // on underflow, increase pulseaudio latency in ~10ms steps void PulseAudio::UnderflowCallback(pa_stream* s) { m_pa_ba.tlength += BUFFER_SAMPLES * m_channels * m_bytespersample; pa_stream_set_buffer_attr(s, &m_pa_ba, nullptr, nullptr); WARN_LOG(AUDIO, "pulseaudio underflow, new latency: %d bytes", m_pa_ba.tlength); } void PulseAudio::WriteCallback(pa_stream* s, size_t length) { int bytes_per_frame = m_channels * m_bytespersample; int frames = (length / bytes_per_frame); size_t trunc_length = frames * bytes_per_frame; // fetch dst buffer directly from pulseaudio, so no memcpy is needed void* buffer; m_pa_error = pa_stream_begin_write(s, &buffer, &trunc_length); if (!buffer || m_pa_error < 0) return; // error will be printed from main loop if (m_stereo) { // use the raw s16 stereo mix m_mixer->Mix((s16*) buffer, frames); } else { // get a floating point mix s16 s16buffer_stereo[frames * 2]; m_mixer->Mix(s16buffer_stereo, frames); // implicitly mixes to 16-bit stereo float floatbuffer_stereo[frames * 2]; // s16 to float for (int i=0; i < frames * 2; ++i) { floatbuffer_stereo[i] = s16buffer_stereo[i] / float(1 << 15); } if (m_channels == 5) // Extract dpl2/5.0 Surround { float floatbuffer_6chan[frames * 6]; // DPL2Decode output: LEFTFRONT, RIGHTFRONT, CENTREFRONT, (sub), LEFTREAR, RIGHTREAR DPL2Decode(floatbuffer_stereo, frames, floatbuffer_6chan); // Discard the subwoofer channel - DPL2Decode generates a pretty // good 5.0 but not a good 5.1 output. const int dpl2_to_5chan[] = {0,1,2,4,5}; for (int i=0; i < frames; ++i) { for (int j=0; j < m_channels; ++j) { ((float*)buffer)[m_channels * i + j] = floatbuffer_6chan[6 * i + dpl2_to_5chan[j]]; } } } else { ERROR_LOG(AUDIO, "Unsupported number of PA channels requested: %d", (int)m_channels); return; } } m_pa_error = pa_stream_write(s, buffer, trunc_length, nullptr, 0, PA_SEEK_RELATIVE); } // Callbacks that forward to internal methods (required because PulseAudio is a C API). void PulseAudio::StateCallback(pa_context* c, void* userdata) { PulseAudio* p = (PulseAudio*) userdata; p->StateCallback(c); } void PulseAudio::UnderflowCallback(pa_stream* s, void* userdata) { PulseAudio* p = (PulseAudio*) userdata; p->UnderflowCallback(s); } void PulseAudio::WriteCallback(pa_stream* s, size_t length, void* userdata) { PulseAudio* p = (PulseAudio*) userdata; p->WriteCallback(s, length); }