// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <algorithm>
#include <cmath>

#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "VideoBackends/Software/DebugUtil.h"
#include "VideoBackends/Software/EfbInterface.h"
#include "VideoBackends/Software/Tev.h"
#include "VideoBackends/Software/TextureSampler.h"

#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"

#ifdef _DEBUG
#define ALLOW_TEV_DUMPS 1
#else
#define ALLOW_TEV_DUMPS 0
#endif

void Tev::Init()
{
  FixedConstants[0] = 0;
  FixedConstants[1] = 32;
  FixedConstants[2] = 64;
  FixedConstants[3] = 96;
  FixedConstants[4] = 128;
  FixedConstants[5] = 159;
  FixedConstants[6] = 191;
  FixedConstants[7] = 223;
  FixedConstants[8] = 255;

  for (s16& comp : Zero16)
  {
    comp = 0;
  }

  m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C];
  m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C];
  m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C];  // prev.rgb
  m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C];
  m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C];
  m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C];  // prev.aaa
  m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C];
  m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C];
  m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C];  // c0.rgb
  m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C];
  m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C];
  m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C];  // c0.aaa
  m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C];
  m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C];
  m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C];  // c1.rgb
  m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C];
  m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C];
  m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C];  // c1.aaa
  m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C];
  m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C];
  m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C];  // c2.rgb
  m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C];
  m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C];
  m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C];  // c2.aaa
  m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C];
  m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C];
  m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C];  // tex.rgb
  m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C];
  m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C];
  m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C];  // tex.aaa
  m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C];
  m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C];
  m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C];  // ras.rgb
  m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C];
  m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C];
  m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C];  // ras.rgb
  m_ColorInputLUT[12][RED_INP] = &FixedConstants[8];
  m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8];
  m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8];  // one
  m_ColorInputLUT[13][RED_INP] = &FixedConstants[4];
  m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4];
  m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4];  // half
  m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C];
  m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C];
  m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C];  // konst
  m_ColorInputLUT[15][RED_INP] = &FixedConstants[0];
  m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0];
  m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0];  // zero

  m_AlphaInputLUT[0] = &Reg[0][ALP_C];      // prev
  m_AlphaInputLUT[1] = &Reg[1][ALP_C];      // c0
  m_AlphaInputLUT[2] = &Reg[2][ALP_C];      // c1
  m_AlphaInputLUT[3] = &Reg[3][ALP_C];      // c2
  m_AlphaInputLUT[4] = &TexColor[ALP_C];    // tex
  m_AlphaInputLUT[5] = &RasColor[ALP_C];    // ras
  m_AlphaInputLUT[6] = &StageKonst[ALP_C];  // konst
  m_AlphaInputLUT[7] = &Zero16[ALP_C];      // zero

  for (int comp = 0; comp < 4; comp++)
  {
    m_KonstLUT[0][comp] = &FixedConstants[8];
    m_KonstLUT[1][comp] = &FixedConstants[7];
    m_KonstLUT[2][comp] = &FixedConstants[6];
    m_KonstLUT[3][comp] = &FixedConstants[5];
    m_KonstLUT[4][comp] = &FixedConstants[4];
    m_KonstLUT[5][comp] = &FixedConstants[3];
    m_KonstLUT[6][comp] = &FixedConstants[2];
    m_KonstLUT[7][comp] = &FixedConstants[1];

    // These are "invalid" values, not meant to be used. On hardware,
    // they all output zero.
    for (int i = 8; i < 16; ++i)
    {
      m_KonstLUT[i][comp] = &FixedConstants[0];
    }

    if (comp != ALP_C)
    {
      m_KonstLUT[12][comp] = &KonstantColors[0][comp];
      m_KonstLUT[13][comp] = &KonstantColors[1][comp];
      m_KonstLUT[14][comp] = &KonstantColors[2][comp];
      m_KonstLUT[15][comp] = &KonstantColors[3][comp];
    }

    m_KonstLUT[16][comp] = &KonstantColors[0][RED_C];
    m_KonstLUT[17][comp] = &KonstantColors[1][RED_C];
    m_KonstLUT[18][comp] = &KonstantColors[2][RED_C];
    m_KonstLUT[19][comp] = &KonstantColors[3][RED_C];
    m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C];
    m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C];
    m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C];
    m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C];
    m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C];
    m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C];
    m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C];
    m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C];
    m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C];
    m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C];
    m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C];
    m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C];
  }

  m_BiasLUT[0] = 0;
  m_BiasLUT[1] = 128;
  m_BiasLUT[2] = -128;
  m_BiasLUT[3] = 0;

  m_ScaleLShiftLUT[0] = 0;
  m_ScaleLShiftLUT[1] = 1;
  m_ScaleLShiftLUT[2] = 2;
  m_ScaleLShiftLUT[3] = 0;

  m_ScaleRShiftLUT[0] = 0;
  m_ScaleRShiftLUT[1] = 0;
  m_ScaleRShiftLUT[2] = 0;
  m_ScaleRShiftLUT[3] = 1;
}

static inline s16 Clamp255(s16 in)
{
  return in > 255 ? 255 : (in < 0 ? 0 : in);
}

static inline s16 Clamp1024(s16 in)
{
  return in > 1023 ? 1023 : (in < -1024 ? -1024 : in);
}

void Tev::SetRasColor(int colorChan, int swaptable)
{
  switch (colorChan)
  {
  case 0:  // Color0
  {
    const u8* color = Color[0];
    RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
    RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
    swaptable++;
    RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
    RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
  }
  break;
  case 1:  // Color1
  {
    const u8* color = Color[1];
    RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
    RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
    swaptable++;
    RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
    RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
  }
  break;
  case 5:  // alpha bump
  {
    for (s16& comp : RasColor)
    {
      comp = AlphaBump;
    }
  }
  break;
  case 6:  // alpha bump normalized
  {
    const u8 normalized = AlphaBump | AlphaBump >> 5;
    for (s16& comp : RasColor)
    {
      comp = normalized;
    }
  }
  break;
  default:  // zero
  {
    for (s16& comp : RasColor)
    {
      comp = 0;
    }
  }
  break;
  }
}

void Tev::DrawColorRegular(const TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4])
{
  for (int i = 0; i < 3; i++)
  {
    const InputRegType& InputReg = inputs[BLU_C + i];

    const u16 c = InputReg.c + (InputReg.c >> 7);

    s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
    temp <<= m_ScaleLShiftLUT[cc.shift];
    temp += (cc.shift == 3) ? 0 : (cc.op == 1) ? 127 : 128;
    temp >>= 8;
    temp = cc.op ? -temp : temp;

    s32 result = ((InputReg.d + m_BiasLUT[cc.bias]) << m_ScaleLShiftLUT[cc.shift]) + temp;
    result = result >> m_ScaleRShiftLUT[cc.shift];

    Reg[cc.dest][BLU_C + i] = result;
  }
}

void Tev::DrawColorCompare(const TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4])
{
  for (int i = BLU_C; i <= RED_C; i++)
  {
    switch ((cc.shift << 1) | cc.op | 8)  // encoded compare mode
    {
    case TEVCMP_R8_GT:
      Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[i].c : 0);
      break;

    case TEVCMP_R8_EQ:
      Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[i].c : 0);
      break;

    case TEVCMP_GR16_GT:
    {
      const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
      const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
      Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
    }
    break;

    case TEVCMP_GR16_EQ:
    {
      const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
      const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
      Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
    }
    break;

    case TEVCMP_BGR24_GT:
    {
      const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
      const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
      Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
    }
    break;

    case TEVCMP_BGR24_EQ:
    {
      const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
      const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
      Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
    }
    break;

    case TEVCMP_RGB8_GT:
      Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a > inputs[i].b) ? inputs[i].c : 0);
      break;

    case TEVCMP_RGB8_EQ:
      Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a == inputs[i].b) ? inputs[i].c : 0);
      break;
    }
  }
}

void Tev::DrawAlphaRegular(const TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
{
  const InputRegType& InputReg = inputs[ALP_C];

  const u16 c = InputReg.c + (InputReg.c >> 7);

  s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
  temp <<= m_ScaleLShiftLUT[ac.shift];
  temp += (ac.shift != 3) ? 0 : (ac.op == 1) ? 127 : 128;
  temp = ac.op ? (-temp >> 8) : (temp >> 8);

  s32 result = ((InputReg.d + m_BiasLUT[ac.bias]) << m_ScaleLShiftLUT[ac.shift]) + temp;
  result = result >> m_ScaleRShiftLUT[ac.shift];

  Reg[ac.dest][ALP_C] = result;
}

void Tev::DrawAlphaCompare(const TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
{
  switch ((ac.shift << 1) | ac.op | 8)  // encoded compare mode
  {
  case TEVCMP_R8_GT:
    Reg[ac.dest][ALP_C] =
        inputs[ALP_C].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[ALP_C].c : 0);
    break;

  case TEVCMP_R8_EQ:
    Reg[ac.dest][ALP_C] =
        inputs[ALP_C].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[ALP_C].c : 0);
    break;

  case TEVCMP_GR16_GT:
  {
    const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
    const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
    Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
  }
  break;

  case TEVCMP_GR16_EQ:
  {
    const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
    const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
    Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
  }
  break;

  case TEVCMP_BGR24_GT:
  {
    const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
    const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
    Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
  }
  break;

  case TEVCMP_BGR24_EQ:
  {
    const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
    const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
    Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
  }
  break;

  case TEVCMP_A8_GT:
    Reg[ac.dest][ALP_C] =
        inputs[ALP_C].d + ((inputs[ALP_C].a > inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
    break;

  case TEVCMP_A8_EQ:
    Reg[ac.dest][ALP_C] =
        inputs[ALP_C].d + ((inputs[ALP_C].a == inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
    break;
  }
}

static bool AlphaCompare(int alpha, int ref, AlphaTest::CompareMode comp)
{
  switch (comp)
  {
  case AlphaTest::ALWAYS:
    return true;
  case AlphaTest::NEVER:
    return false;
  case AlphaTest::LEQUAL:
    return alpha <= ref;
  case AlphaTest::LESS:
    return alpha < ref;
  case AlphaTest::GEQUAL:
    return alpha >= ref;
  case AlphaTest::GREATER:
    return alpha > ref;
  case AlphaTest::EQUAL:
    return alpha == ref;
  case AlphaTest::NEQUAL:
    return alpha != ref;
  default:
    return true;
  }
}

static bool TevAlphaTest(int alpha)
{
  const bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0);
  const bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1);

  switch (bpmem.alpha_test.logic)
  {
  case 0:
    return comp0 && comp1;  // and
  case 1:
    return comp0 || comp1;  // or
  case 2:
    return comp0 ^ comp1;  // xor
  case 3:
    return !(comp0 ^ comp1);  // xnor
  default:
    return true;
  }
}

static inline s32 WrapIndirectCoord(s32 coord, int wrapMode)
{
  switch (wrapMode)
  {
  case ITW_OFF:
    return coord;
  case ITW_256:
    return (coord & ((256 << 7) - 1));
  case ITW_128:
    return (coord & ((128 << 7) - 1));
  case ITW_64:
    return (coord & ((64 << 7) - 1));
  case ITW_32:
    return (coord & ((32 << 7) - 1));
  case ITW_16:
    return (coord & ((16 << 7) - 1));
  case ITW_0:
    return 0;
  default:
    return 0;
  }
}

void Tev::Indirect(unsigned int stageNum, s32 s, s32 t)
{
  const TevStageIndirect& indirect = bpmem.tevind[stageNum];
  const u8* indmap = IndirectTex[indirect.bt];

  s32 indcoord[3];

  // alpha bump select
  switch (indirect.bs)
  {
  case ITBA_OFF:
    AlphaBump = 0;
    break;
  case ITBA_S:
    AlphaBump = indmap[TextureSampler::ALP_SMP];
    break;
  case ITBA_T:
    AlphaBump = indmap[TextureSampler::BLU_SMP];
    break;
  case ITBA_U:
    AlphaBump = indmap[TextureSampler::GRN_SMP];
    break;
  }

  // bias select
  const s16 biasValue = indirect.fmt == ITF_8 ? -128 : 1;
  s16 bias[3];
  bias[0] = indirect.bias & 1 ? biasValue : 0;
  bias[1] = indirect.bias & 2 ? biasValue : 0;
  bias[2] = indirect.bias & 4 ? biasValue : 0;

  // format
  switch (indirect.fmt)
  {
  case ITF_8:
    indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0];
    indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1];
    indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2];
    AlphaBump = AlphaBump & 0xf8;
    break;
  case ITF_5:
    indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0];
    indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1];
    indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2];
    AlphaBump = AlphaBump & 0xe0;
    break;
  case ITF_4:
    indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0];
    indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1];
    indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2];
    AlphaBump = AlphaBump & 0xf0;
    break;
  case ITF_3:
    indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0];
    indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1];
    indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2];
    AlphaBump = AlphaBump & 0xf8;
    break;
  default:
    PanicAlert("Tev::Indirect");
    return;
  }

  s32 indtevtrans[2] = {0, 0};

  // matrix multiply - results might overflow, but we don't care since we only use the lower 24 bits
  // of the result.
  const int indmtxid = indirect.mid & 3;
  if (indmtxid)
  {
    const IND_MTX& indmtx = bpmem.indmtx[indmtxid - 1];
    const int scale =
        ((u32)indmtx.col0.s0 << 0) | ((u32)indmtx.col1.s1 << 2) | ((u32)indmtx.col2.s2 << 4);

    int shift;

    switch (indirect.mid & 12)
    {
    case 0:
      // matrix values are S0.10, output format is S17.7, so divide by 8
      shift = (17 - scale);
      indtevtrans[0] = (indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] +
                        indmtx.col2.me * indcoord[2]) >>
                       3;
      indtevtrans[1] = (indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] +
                        indmtx.col2.mf * indcoord[2]) >>
                       3;
      break;
    case 4:  // s matrix
      // s is S17.7, matrix elements are divided by 256, output is S17.7, so divide by 256. - TODO:
      // Maybe, since s is actually stored as S24, we should divide by 256*64?
      shift = (17 - scale);
      indtevtrans[0] = s * indcoord[0] / 256;
      indtevtrans[1] = t * indcoord[0] / 256;
      break;
    case 8:  // t matrix
      shift = (17 - scale);
      indtevtrans[0] = s * indcoord[1] / 256;
      indtevtrans[1] = t * indcoord[1] / 256;
      break;
    default:
      return;
    }

    indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift;
    indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift;
  }

  if (indirect.fb_addprev)
  {
    TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
    TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
  }
  else
  {
    TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
    TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
  }
}

void Tev::Draw()
{
  ASSERT(Position[0] >= 0 && Position[0] < EFB_WIDTH);
  ASSERT(Position[1] >= 0 && Position[1] < EFB_HEIGHT);

  INCSTAT(stats.thisFrame.tevPixelsIn);

  // initial color values
  for (int i = 0; i < 4; i++)
  {
    Reg[i][RED_C] = PixelShaderManager::constants.colors[i][0];
    Reg[i][GRN_C] = PixelShaderManager::constants.colors[i][1];
    Reg[i][BLU_C] = PixelShaderManager::constants.colors[i][2];
    Reg[i][ALP_C] = PixelShaderManager::constants.colors[i][3];
  }

  for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++)
  {
    const int stageNum2 = stageNum >> 1;
    const int stageOdd = stageNum & 1;

    const u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum);
    const u32 texmap = bpmem.tevindref.getTexMap(stageNum);

    const TEXSCALE& texscale = bpmem.texscale[stageNum2];
    const s32 scaleS = stageOdd ? texscale.ss1 : texscale.ss0;
    const s32 scaleT = stageOdd ? texscale.ts1 : texscale.ts0;

    TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT,
                           IndirectLod[stageNum], IndirectLinear[stageNum], texmap,
                           IndirectTex[stageNum]);

#if ALLOW_TEV_DUMPS
    if (g_ActiveConfig.bDumpTevStages)
    {
      u8 stage[4] = {IndirectTex[stageNum][TextureSampler::ALP_SMP],
                     IndirectTex[stageNum][TextureSampler::BLU_SMP],
                     IndirectTex[stageNum][TextureSampler::GRN_SMP], 255};
      DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum);
    }
#endif
  }

  for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++)
  {
    const int stageNum2 = stageNum >> 1;
    const int stageOdd = stageNum & 1;
    const TwoTevStageOrders& order = bpmem.tevorders[stageNum2];
    const TevKSel& kSel = bpmem.tevksel[stageNum2];

    // stage combiners
    const TevStageCombiner::ColorCombiner& cc = bpmem.combiners[stageNum].colorC;
    const TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[stageNum].alphaC;

    const int texcoordSel = order.getTexCoord(stageOdd);
    const int texmap = order.getTexMap(stageOdd);

    Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t);

    // sample texture
    if (order.getEnable(stageOdd))
    {
      // RGBA
      u8 texel[4];

      TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum],
                             texmap, texel);

#if ALLOW_TEV_DUMPS
      if (g_ActiveConfig.bDumpTevTextureFetches)
        DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum);
#endif

      int swaptable = ac.tswap * 2;

      TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1];
      TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2];
      swaptable++;
      TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1];
      TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2];
    }

    // set konst for this stage
    const int kc = kSel.getKC(stageOdd);
    const int ka = kSel.getKA(stageOdd);
    StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]);
    StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]);
    StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]);
    StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]);

    // set color
    SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2);

    // combine inputs
    InputRegType inputs[4];
    for (int i = 0; i < 3; i++)
    {
      inputs[BLU_C + i].a = *m_ColorInputLUT[cc.a][i];
      inputs[BLU_C + i].b = *m_ColorInputLUT[cc.b][i];
      inputs[BLU_C + i].c = *m_ColorInputLUT[cc.c][i];
      inputs[BLU_C + i].d = *m_ColorInputLUT[cc.d][i];
    }
    inputs[ALP_C].a = *m_AlphaInputLUT[ac.a];
    inputs[ALP_C].b = *m_AlphaInputLUT[ac.b];
    inputs[ALP_C].c = *m_AlphaInputLUT[ac.c];
    inputs[ALP_C].d = *m_AlphaInputLUT[ac.d];

    if (cc.bias != 3)
      DrawColorRegular(cc, inputs);
    else
      DrawColorCompare(cc, inputs);

    if (cc.clamp)
    {
      Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]);
      Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]);
      Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]);
    }
    else
    {
      Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]);
      Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]);
      Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]);
    }

    if (ac.bias != 3)
      DrawAlphaRegular(ac, inputs);
    else
      DrawAlphaCompare(ac, inputs);

    if (ac.clamp)
      Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]);
    else
      Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]);

#if ALLOW_TEV_DUMPS
    if (g_ActiveConfig.bDumpTevStages)
    {
      u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]};
      DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum);
    }
#endif
  }

  // convert to 8 bits per component
  // the results of the last tev stage are put onto the screen,
  // regardless of the used destination register - TODO: Verify!
  const u32 color_index = bpmem.combiners[bpmem.genMode.numtevstages].colorC.dest;
  const u32 alpha_index = bpmem.combiners[bpmem.genMode.numtevstages].alphaC.dest;
  u8 output[4] = {(u8)Reg[alpha_index][ALP_C], (u8)Reg[color_index][BLU_C],
                  (u8)Reg[color_index][GRN_C], (u8)Reg[color_index][RED_C]};

  if (!TevAlphaTest(output[ALP_C]))
    return;

  // z texture
  if (bpmem.ztex2.op)
  {
    u32 ztex = bpmem.ztex1.bias;
    switch (bpmem.ztex2.type)
    {
    case 0:  // 8 bit
      ztex += TexColor[ALP_C];
      break;
    case 1:  // 16 bit
      ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
      break;
    case 2:  // 24 bit
      ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
      break;
    }

    if (bpmem.ztex2.op == ZTEXTURE_ADD)
      ztex += Position[2];

    Position[2] = ztex & 0x00ffffff;
  }

  // fog
  if (bpmem.fog.c_proj_fsel.fsel)
  {
    float ze;

    if (bpmem.fog.c_proj_fsel.proj == 0)
    {
      // perspective
      // ze = A/(B - (Zs >> B_SHF))
      const s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
      // in addition downscale magnitude and zs to 0.24 bits
      ze = (bpmem.fog.GetA() * 16777215.0f) / static_cast<float>(denom);
    }
    else
    {
      // orthographic
      // ze = a*Zs
      // in addition downscale zs to 0.24 bits
      ze = bpmem.fog.GetA() * (static_cast<float>(Position[2]) / 16777215.0f);
    }

    if (bpmem.fogRange.Base.Enabled)
    {
      // TODO: This is untested and should definitely be checked against real hw.
      // - No idea if offset is really normalized against the viewport width or against the
      // projection matrix or yet something else
      // - scaling of the "k" coefficient isn't clear either.

      // First, calculate the offset from the viewport center (normalized to 0..1)
      const float offset =
          (Position[0] - (static_cast<s32>(bpmem.fogRange.Base.Center.Value()) - 342)) /
          static_cast<float>(xfmem.viewport.wd);

      // Based on that, choose the index such that points which are far away from the z-axis use the
      // 10th "k" value and such that central points use the first value.
      float floatindex = 9.f - std::abs(offset) * 9.f;
      floatindex = std::clamp(floatindex, 0.f, 9.f);  // TODO: This shouldn't be necessary!

      // Get the two closest integer indices, look up the corresponding samples
      const int indexlower = (int)floatindex;
      const int indexupper = indexlower + 1;
      // Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog
      // is too strong without the factor)
      const float klower = bpmem.fogRange.K[indexlower / 2].GetValue(indexlower % 2) * 4.f;
      const float kupper = bpmem.fogRange.K[indexupper / 2].GetValue(indexupper % 2) * 4.f;

      // linearly interpolate the samples and multiple ze by the resulting adjustment factor
      const float factor = indexupper - floatindex;
      const float k = klower * factor + kupper * (1.f - factor);
      const float x_adjust = sqrt(offset * offset + k * k) / k;
      ze *= x_adjust;  // NOTE: This is basically dividing by a cosine (hidden behind
                       // GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
    }

    ze -= bpmem.fog.GetC();

    // clamp 0 to 1
    float fog = std::clamp(ze, 0.f, 1.f);

    switch (bpmem.fog.c_proj_fsel.fsel)
    {
    case 4:  // exp
      fog = 1.0f - pow(2.0f, -8.0f * fog);
      break;
    case 5:  // exp2
      fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
      break;
    case 6:  // backward exp
      fog = 1.0f - fog;
      fog = pow(2.0f, -8.0f * fog);
      break;
    case 7:  // backward exp2
      fog = 1.0f - fog;
      fog = pow(2.0f, -8.0f * fog * fog);
      break;
    }

    // lerp from output to fog color
    const u32 fogInt = (u32)(fog * 256);
    const u32 invFog = 256 - fogInt;

    output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
    output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
    output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
  }

  const bool late_ztest = !bpmem.zcontrol.early_ztest || !g_ActiveConfig.bZComploc;
  if (late_ztest && bpmem.zmode.testenable)
  {
    // TODO: Check against hw if these values get incremented even if depth testing is disabled
    EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);

    if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
      return;

    EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
  }

  // branchless bounding box update
  BoundingBox::coords[BoundingBox::LEFT] =
      std::min((u16)Position[0], BoundingBox::coords[BoundingBox::LEFT]);
  BoundingBox::coords[BoundingBox::RIGHT] =
      std::max((u16)Position[0], BoundingBox::coords[BoundingBox::RIGHT]);
  BoundingBox::coords[BoundingBox::TOP] =
      std::min((u16)Position[1], BoundingBox::coords[BoundingBox::TOP]);
  BoundingBox::coords[BoundingBox::BOTTOM] =
      std::max((u16)Position[1], BoundingBox::coords[BoundingBox::BOTTOM]);

#if ALLOW_TEV_DUMPS
  if (g_ActiveConfig.bDumpTevStages)
  {
    for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
      DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect");
    for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
      DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage");
  }

  if (g_ActiveConfig.bDumpTevTextureFetches)
  {
    for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
    {
      TwoTevStageOrders& order = bpmem.tevorders[i >> 1];
      if (order.getEnable(i & 1))
        DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch");
    }
  }
#endif

  INCSTAT(stats.thisFrame.tevPixelsOut);
  EfbInterface::IncPerfCounterQuadCount(PQ_BLEND_INPUT);

  EfbInterface::BlendTev(Position[0], Position[1], output);
}

void Tev::SetRegColor(int reg, int comp, s16 color)
{
  KonstantColors[reg][comp] = color;
}