// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.

#include "Common/CommonTypes.h"
#include "Common/MemoryUtil.h"
#include "Common/StringUtil.h"
#include "Common/x64ABI.h"
#include "Common/x64Emitter.h"

#include "Core/Host.h"

#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/LookUpTables.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoader_Color.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
#include "VideoCommon/VertexLoader_TextCoord.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"


#define COMPILED_CODE_SIZE 4096

#ifndef _WIN32
	#undef inline
	#define inline
#endif

// Matrix components are first in GC format but later in PC format - we need to store it temporarily
// when decoding each vertex.
static u8 s_curposmtx = g_main_cp_state.matrix_index_a.PosNormalMtxIdx;
static u8 s_curtexmtx[8];
static int s_texmtxwrite = 0;
static int s_texmtxread = 0;

// Vertex loaders read these. Although the scale ones should be baked into the shader.
int tcIndex;
int colIndex;
int colElements[2];
float posScale;
float tcScale[8];

static const float fractionTable[32] = {
	1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3),
	1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7),
	1.0f / (1U << 8), 1.0f / (1U << 9), 1.0f / (1U << 10), 1.0f / (1U << 11),
	1.0f / (1U << 12), 1.0f / (1U << 13), 1.0f / (1U << 14), 1.0f / (1U << 15),
	1.0f / (1U << 16), 1.0f / (1U << 17), 1.0f / (1U << 18), 1.0f / (1U << 19),
	1.0f / (1U << 20), 1.0f / (1U << 21), 1.0f / (1U << 22), 1.0f / (1U << 23),
	1.0f / (1U << 24), 1.0f / (1U << 25), 1.0f / (1U << 26), 1.0f / (1U << 27),
	1.0f / (1U << 28), 1.0f / (1U << 29), 1.0f / (1U << 30), 1.0f / (1U << 31),
};

using namespace Gen;

static void LOADERDECL PosMtx_ReadDirect_UByte()
{
	BoundingBox::posMtxIdx = s_curposmtx = DataReadU8() & 0x3f;
	PRIM_LOG("posmtx: %d, ", s_curposmtx);
}

static void LOADERDECL PosMtx_Write()
{
	DataWrite<u8>(s_curposmtx);
	DataWrite<u8>(0);
	DataWrite<u8>(0);
	DataWrite<u8>(0);
}

static void LOADERDECL TexMtx_ReadDirect_UByte()
{
	BoundingBox::texMtxIdx[s_texmtxread] = s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f;

	PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
	s_texmtxread++;
}

static void LOADERDECL TexMtx_Write_Float()
{
	DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}

static void LOADERDECL TexMtx_Write_Float2()
{
	DataWrite(0.f);
	DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}

static void LOADERDECL TexMtx_Write_Float4()
{
	DataWrite(0.f);
	DataWrite(0.f);
	DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
	// Just to fill out with 0.
	DataWrite(0.f);
}

VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr)
{
	m_compiledCode = nullptr;
	m_numLoadedVertices = 0;
	m_VertexSize = 0;
	m_native_vertex_format = nullptr;
	VertexLoader_Normal::Init();
	VertexLoader_Position::Init();
	VertexLoader_TextCoord::Init();

	m_VtxDesc = vtx_desc;
	SetVAT(vtx_attr);

	#ifdef USE_VERTEX_LOADER_JIT
	AllocCodeSpace(COMPILED_CODE_SIZE);
	CompileVertexTranslator();
	WriteProtect();
	#else
	m_numPipelineStages = 0;
	CompileVertexTranslator();
	#endif

}

VertexLoader::~VertexLoader()
{
	#ifdef USE_VERTEX_LOADER_JIT
	FreeCodeSpace();
	#endif
}

void VertexLoader::CompileVertexTranslator()
{
	m_VertexSize = 0;
	const TVtxAttr &vtx_attr = m_VtxAttr;

#ifdef USE_VERTEX_LOADER_JIT
	if (m_compiledCode)
		PanicAlert("Trying to recompile a vertex translator");

	m_compiledCode = GetCodePtr();
	// We only use RAX (caller saved) and RBX (callee saved).
	ABI_PushRegistersAndAdjustStack(1 << RBX, 8);

	// save count
	MOV(64, R(RBX), R(ABI_PARAM1));

	// Start loop here
	const u8 *loop_start = GetCodePtr();

	// Reset component counters if present in vertex format only.
	if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord ||
		m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord)
	{
		WriteSetVariable(32, &tcIndex, Imm32(0));
	}
	if (m_VtxDesc.Color0 || m_VtxDesc.Color1)
	{
		WriteSetVariable(32, &colIndex, Imm32(0));
	}
	if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx ||
		m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx)
	{
		WriteSetVariable(32, &s_texmtxwrite, Imm32(0));
		WriteSetVariable(32, &s_texmtxread, Imm32(0));
	}
#else
	// Reset pipeline
	m_numPipelineStages = 0;
#endif

	// Get the pointer to this vertex's buffer data for the bounding box
	WriteCall(BoundingBox::SetVertexBufferPosition);

	// Colors
	const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
	// TextureCoord
	const u64 tc[8] = {
		m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
		m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord
	};

	u32 components = 0;

	// Position in pc vertex format.
	int nat_offset = 0;
	memset(&m_native_vtx_decl, 0, sizeof(m_native_vtx_decl));

	// Position Matrix Index
	if (m_VtxDesc.PosMatIdx)
	{
		WriteCall(PosMtx_ReadDirect_UByte);
		components |= VB_HAS_POSMTXIDX;
		m_VertexSize += 1;
	}

	if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
	if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }

	// Write vertex position loader
	WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));

	m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements);
	nat_offset += 12;
	m_native_vtx_decl.position.components = 3;
	m_native_vtx_decl.position.enable = true;
	m_native_vtx_decl.position.offset = 0;
	m_native_vtx_decl.position.type = VAR_FLOAT;
	m_native_vtx_decl.position.integer = false;

	// Normals
	if (m_VtxDesc.Normal != NOT_PRESENT)
	{
		m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal,
			m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);

		TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal,
			m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);

		if (pFunc == nullptr)
		{
			Host_SysMessage(
				StringFromFormat("VertexLoader_Normal::GetFunction(%i %i %i %i) returned zero!",
				(u32)m_VtxDesc.Normal, m_VtxAttr.NormalFormat,
				m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3).c_str());
		}
		WriteCall(pFunc);

		for (int i = 0; i < (vtx_attr.NormalElements ? 3 : 1); i++)
		{
			m_native_vtx_decl.normals[i].components = 3;
			m_native_vtx_decl.normals[i].enable = true;
			m_native_vtx_decl.normals[i].offset = nat_offset;
			m_native_vtx_decl.normals[i].type = VAR_FLOAT;
			m_native_vtx_decl.normals[i].integer = false;
			nat_offset += 12;
		}

		components |= VB_HAS_NRM0;
		if (m_VtxAttr.NormalElements == 1)
			components |= VB_HAS_NRM1 | VB_HAS_NRM2;
	}

	for (int i = 0; i < 2; i++)
	{
		m_native_vtx_decl.colors[i].components = 4;
		m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
		m_native_vtx_decl.colors[i].integer = false;
		switch (col[i])
		{
		case NOT_PRESENT:
			break;
		case DIRECT:
			switch (m_VtxAttr.color[i].Comp)
			{
			case FORMAT_16B_565:  m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break;
			case FORMAT_24B_888:  m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break;
			case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break;
			case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break;
			case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break;
			case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break;
			default: _assert_(0); break;
			}
			break;
		case INDEX8:
			m_VertexSize += 1;
			switch (m_VtxAttr.color[i].Comp)
			{
			case FORMAT_16B_565:  WriteCall(Color_ReadIndex8_16b_565); break;
			case FORMAT_24B_888:  WriteCall(Color_ReadIndex8_24b_888); break;
			case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
			case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
			case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
			case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
			default: _assert_(0); break;
			}
			break;
		case INDEX16:
			m_VertexSize += 2;
			switch (m_VtxAttr.color[i].Comp)
			{
			case FORMAT_16B_565:  WriteCall(Color_ReadIndex16_16b_565); break;
			case FORMAT_24B_888:  WriteCall(Color_ReadIndex16_24b_888); break;
			case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
			case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
			case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
			case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
			default: _assert_(0); break;
			}
			break;
		}
		// Common for the three bottom cases
		if (col[i] != NOT_PRESENT)
		{
			components |= VB_HAS_COL0 << i;
			m_native_vtx_decl.colors[i].offset = nat_offset;
			m_native_vtx_decl.colors[i].enable = true;
			nat_offset += 4;
		}
	}

	// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
	for (int i = 0; i < 8; i++)
	{
		m_native_vtx_decl.texcoords[i].offset = nat_offset;
		m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
		m_native_vtx_decl.texcoords[i].integer = false;

		const int format = m_VtxAttr.texCoord[i].Format;
		const int elements = m_VtxAttr.texCoord[i].Elements;

		if (tc[i] == NOT_PRESENT)
		{
			components &= ~(VB_HAS_UV0 << i);
		}
		else
		{
			_assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", (u32)tc[i]);
			_assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format);
			_assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elements!\n(elements = %d)", elements);

			components |= VB_HAS_UV0 << i;
			WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements));
			m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements);
		}

		if (components & (VB_HAS_TEXMTXIDX0 << i))
		{
			m_native_vtx_decl.texcoords[i].enable = true;
			if (tc[i] != NOT_PRESENT)
			{
				// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
				m_native_vtx_decl.texcoords[i].components = 3;
				nat_offset += 12;
				WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
			}
			else
			{
				components |= VB_HAS_UV0 << i; // have to include since using now
				m_native_vtx_decl.texcoords[i].components = 4;
				nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes
				WriteCall(TexMtx_Write_Float4);
			}
		}
		else
		{
			if (tc[i] != NOT_PRESENT)
			{
				m_native_vtx_decl.texcoords[i].enable = true;
				m_native_vtx_decl.texcoords[i].components = vtx_attr.texCoord[i].Elements ? 2 : 1;
				nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1);
			}
		}

		if (tc[i] == NOT_PRESENT)
		{
			// if there's more tex coords later, have to write a dummy call
			int j = i + 1;
			for (; j < 8; ++j)
			{
				if (tc[j] != NOT_PRESENT)
				{
					WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right!
					break;
				}
			}
			// tricky!
			if (j == 8 && !((components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1))))
			{
				// no more tex coords and tex matrices, so exit loop
				break;
			}
		}
	}

	// Update the bounding box
	WriteCall(BoundingBox::Update);

	if (m_VtxDesc.PosMatIdx)
	{
		WriteCall(PosMtx_Write);
		m_native_vtx_decl.posmtx.components = 4;
		m_native_vtx_decl.posmtx.enable = true;
		m_native_vtx_decl.posmtx.offset = nat_offset;
		m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
		m_native_vtx_decl.posmtx.integer = true;
		nat_offset += 4;
	}

	m_native_components = components;
	m_native_vtx_decl.stride = nat_offset;

#ifdef USE_VERTEX_LOADER_JIT
	// End loop here
	SUB(64, R(RBX), Imm8(1));

	J_CC(CC_NZ, loop_start);
	ABI_PopRegistersAndAdjustStack(1 << RBX, 8);
	RET();
#endif
}

void VertexLoader::WriteCall(TPipelineFunction func)
{
#ifdef USE_VERTEX_LOADER_JIT
	MOV(64, R(RAX), Imm64((u64)func));
	CALLptr(R(RAX));
#else
	m_PipelineStages[m_numPipelineStages++] = func;
#endif
}
// ARMTODO: This should be done in a better way
#ifndef _M_GENERIC
void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address)
{
#ifdef USE_VERTEX_LOADER_JIT
	MOV(64, R(RAX), Imm64((u64)address));
	MOV(bits, dest, MatR(RAX));
#endif
}

void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value)
{
#ifdef USE_VERTEX_LOADER_JIT
	MOV(64, R(RAX), Imm64((u64)address));
	MOV(bits, MatR(RAX), value);
#endif
}
#endif

void VertexLoader::SetupRunVertices(const VAT& vat, int primitive, int const count)
{
	m_numLoadedVertices += count;

	// Load position and texcoord scale factors.
	m_VtxAttr.PosFrac          = vat.g0.PosFrac;
	m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac;
	m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac;
	m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac;
	m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac;
	m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac;
	m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac;
	m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac;
	m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac;

	posScale = fractionTable[m_VtxAttr.PosFrac];
	if (m_native_components & VB_HAS_UVALL)
		for (int i = 0; i < 8; i++)
			tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac];
	for (int i = 0; i < 2; i++)
		colElements[i] = m_VtxAttr.color[i].Elements;

	// Prepare bounding box
	BoundingBox::Prepare(vat, primitive, m_VtxDesc, m_native_vtx_decl);
}

void VertexLoader::ConvertVertices ( int count )
{
#ifdef USE_VERTEX_LOADER_JIT
	if (count > 0)
	{
		((void (*)(int))(void*)m_compiledCode)(count);
	}
#else
	for (int s = 0; s < count; s++)
	{
		tcIndex = 0;
		colIndex = 0;
		s_texmtxwrite = s_texmtxread = 0;
		for (int i = 0; i < m_numPipelineStages; i++)
			m_PipelineStages[i]();
		PRIM_LOG("\n");
	}
#endif
}

void VertexLoader::RunVertices(const VAT& vat, int primitive, int const count)
{
	SetupRunVertices(vat, primitive, count);
	ConvertVertices(count);
}

void VertexLoader::SetVAT(const VAT& vat)
{
	m_VtxAttr.PosElements          = vat.g0.PosElements;
	m_VtxAttr.PosFormat            = vat.g0.PosFormat;
	m_VtxAttr.PosFrac              = vat.g0.PosFrac;
	m_VtxAttr.NormalElements       = vat.g0.NormalElements;
	m_VtxAttr.NormalFormat         = vat.g0.NormalFormat;
	m_VtxAttr.color[0].Elements    = vat.g0.Color0Elements;
	m_VtxAttr.color[0].Comp        = vat.g0.Color0Comp;
	m_VtxAttr.color[1].Elements    = vat.g0.Color1Elements;
	m_VtxAttr.color[1].Comp        = vat.g0.Color1Comp;
	m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements;
	m_VtxAttr.texCoord[0].Format   = vat.g0.Tex0CoordFormat;
	m_VtxAttr.texCoord[0].Frac     = vat.g0.Tex0Frac;
	m_VtxAttr.ByteDequant          = vat.g0.ByteDequant;
	m_VtxAttr.NormalIndex3         = vat.g0.NormalIndex3;

	m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements;
	m_VtxAttr.texCoord[1].Format   = vat.g1.Tex1CoordFormat;
	m_VtxAttr.texCoord[1].Frac     = vat.g1.Tex1Frac;
	m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements;
	m_VtxAttr.texCoord[2].Format   = vat.g1.Tex2CoordFormat;
	m_VtxAttr.texCoord[2].Frac     = vat.g1.Tex2Frac;
	m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements;
	m_VtxAttr.texCoord[3].Format   = vat.g1.Tex3CoordFormat;
	m_VtxAttr.texCoord[3].Frac     = vat.g1.Tex3Frac;
	m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements;
	m_VtxAttr.texCoord[4].Format   = vat.g1.Tex4CoordFormat;

	m_VtxAttr.texCoord[4].Frac     = vat.g2.Tex4Frac;
	m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements;
	m_VtxAttr.texCoord[5].Format   = vat.g2.Tex5CoordFormat;
	m_VtxAttr.texCoord[5].Frac     = vat.g2.Tex5Frac;
	m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements;
	m_VtxAttr.texCoord[6].Format   = vat.g2.Tex6CoordFormat;
	m_VtxAttr.texCoord[6].Frac     = vat.g2.Tex6Frac;
	m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements;
	m_VtxAttr.texCoord[7].Format   = vat.g2.Tex7CoordFormat;
	m_VtxAttr.texCoord[7].Frac     = vat.g2.Tex7Frac;

	if (!m_VtxAttr.ByteDequant)
	{
		ERROR_LOG(VIDEO, "ByteDequant is set to zero");
	}
};

void VertexLoader::AppendToString(std::string *dest) const
{
	dest->reserve(250);
	static const char *posMode[4] = {
		"Inv",
		"Dir",
		"I8",
		"I16",
	};
	static const char *posFormats[5] = {
		"u8", "s8", "u16", "s16", "flt",
	};
	static const char *colorFormat[8] = {
		"565",
		"888",
		"888x",
		"4444",
		"6666",
		"8888",
		"Inv",
		"Inv",
	};

	dest->append(StringFromFormat("%ib skin: %i P: %i %s-%s ",
		m_VertexSize, (u32)m_VtxDesc.PosMatIdx,
		m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat]));

	if (m_VtxDesc.Normal)
	{
		dest->append(StringFromFormat("Nrm: %i %s-%s ",
			m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat]));
	}

	u64 color_mode[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
	for (int i = 0; i < 2; i++)
	{
		if (color_mode[i])
		{
			dest->append(StringFromFormat("C%i: %i %s-%s ", i, m_VtxAttr.color[i].Elements, posMode[color_mode[i]], colorFormat[m_VtxAttr.color[i].Comp]));
		}
	}
	u64 tex_mode[8] = {
		m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
		m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord
	};
	for (int i = 0; i < 8; i++)
	{
		if (tex_mode[i])
		{
			dest->append(StringFromFormat("T%i: %i %s-%s ",
				i, m_VtxAttr.texCoord[i].Elements, posMode[tex_mode[i]], posFormats[m_VtxAttr.texCoord[i].Format]));
		}
	}
	dest->append(StringFromFormat(" - %i v\n", m_numLoadedVertices));
}

NativeVertexFormat* VertexLoader::GetNativeVertexFormat()
{
	if (m_native_vertex_format)
		return m_native_vertex_format;
	auto& native = s_native_vertex_map[m_native_vtx_decl];
	if (!native)
	{
		auto raw_pointer = g_vertex_manager->CreateNativeVertexFormat();
		native = std::unique_ptr<NativeVertexFormat>(raw_pointer);
		native->Initialize(m_native_vtx_decl);
		native->m_components = m_native_components;
	}
	m_native_vertex_format = native.get();
	return native.get();

}

std::unordered_map<PortableVertexDeclaration, std::unique_ptr<NativeVertexFormat>> VertexLoader::s_native_vertex_map;