// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The gpu draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #ifndef _COMMON_RENDERBASE_H_ #define _COMMON_RENDERBASE_H_ #include "VideoCommon.h" #include "Thread.h" #include "MathUtil.h" #include "NativeVertexFormat.h" #include "FramebufferManagerBase.h" #include "BPMemory.h" #include // TODO: Move these out of here. extern int frameCount; extern int OSDChoice, OSDTime; extern bool s_bLastFrameDumped; // Renderer really isn't a very good name for this class - it's more like "Misc". // The long term goal is to get rid of this class and replace it with others that make // more sense. class Renderer { public: Renderer(); virtual ~Renderer(); virtual void SetColorMask() = 0; virtual void SetBlendMode(bool forceUpdate) = 0; virtual bool SetScissorRect() = 0; virtual void SetGenerationMode() = 0; virtual void SetDepthMode() = 0; virtual void SetLogicOpMode() = 0; virtual void SetDitherMode() = 0; virtual void SetLineWidth() = 0; virtual void SetSamplerState(int stage,int texindex) = 0; virtual void SetInterlacingMode() = 0; virtual void ApplyState(bool bUseDstAlpha) = 0; virtual void RestoreState() = 0; // Real internal resolution: // D3D doesn't support viewports larger than the target size, so we need to resize the target to the viewport size for those. // OpenGL supports this, so GetFullTargetWidth returns the same as GetTargetWidth there. static int GetFullTargetWidth() { return s_Fulltarget_width; } static int GetFullTargetHeight() { return s_Fulltarget_height; } // Ideal internal resolution - determined by display resolution (automatic scaling) and/or a multiple of the native EFB resolution static int GetTargetWidth() { return s_target_width; } static int GetTargetHeight() { return s_target_height; } // Display resolution static int GetBackbufferWidth() { return s_backbuffer_width; } static int GetBackbufferHeight() { return s_backbuffer_height; } // XFB scale - TODO: Remove this and add two XFBToScaled functions instead static float GetXFBScaleX() { return xScale; } static float GetXFBScaleY() { return yScale; } static void SetWindowSize(int width, int height); // EFB coordinate conversion functions // Use this to convert a whole native EFB rect to backbuffer coordinates virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0; // Use this to upscale native EFB coordinates to IDEAL internal resolution static unsigned int EFBToScaledX(int x) { return x * GetTargetWidth() / EFB_WIDTH; } static unsigned int EFBToScaledY(int y) { return y * GetTargetHeight() / EFB_HEIGHT; } // Floating point versions of the above - only use them if really necessary static float EFBToScaledXf(float x) { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); } static float EFBToScaledYf(float y) { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); } // Returns the offset at which the EFB will be drawn onto the backbuffer // NOTE: Never calculate this manually (e.g. to "increase accuracy"), since you might end up getting off-by-one errors. // This is a per-frame constant, so it won't cause any issues. static int TargetStrideX() { return (s_Fulltarget_width - s_target_width) / 2; } static int TargetStrideY() { return (s_Fulltarget_height - s_target_height) / 2; } // Random utilities static void SetScreenshot(const char *filename); static void DrawDebugText(); virtual void RenderText(const char* pstr, int left, int top, u32 color) = 0; virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) = 0; virtual void ReinterpretPixelData(unsigned int convtype) = 0; static void RenderToXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma = 1.0f); virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0; // What's the real difference between these? Too similar names. virtual void ResetAPIState() = 0; virtual void RestoreAPIState() = 0; // Finish up the current frame, print some stats virtual void Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight, const EFBRectangle& rc,float Gamma = 1.0f) = 0; virtual void UpdateViewport() = 0; virtual bool SaveScreenshot(const std::string &filename, const TargetRectangle &rc) = 0; static unsigned int GetPrevPixelFormat() { return prev_efb_format; } static void StorePixelFormat(unsigned int new_format) { prev_efb_format = new_format; } // TODO: doesn't belong here virtual void SetPSConstant4f(unsigned int const_number, float f1, float f2, float f3, float f4) = 0; virtual void SetPSConstant4fv(unsigned int const_number, const float *f) = 0; virtual void SetMultiPSConstant4fv(unsigned int const_number, unsigned int count, const float *f) = 0; // TODO: doesn't belong here virtual void SetVSConstant4f(unsigned int const_number, float f1, float f2, float f3, float f4) = 0; virtual void SetVSConstant4fv(unsigned int const_number, const float *f) = 0; virtual void SetMultiVSConstant3fv(unsigned int const_number, unsigned int count, const float *f) = 0; virtual void SetMultiVSConstant4fv(unsigned int const_number, unsigned int count, const float *f) = 0; protected: static std::mutex s_criticalScreenshot; static std::string s_sScreenshotName; static void CalculateTargetScale(int x, int y, int &scaledX, int &scaledY); static bool CalculateTargetSize(int multiplier = 1); static void CalculateXYScale(const TargetRectangle& dst_rect); static volatile bool s_bScreenshot; // The framebuffer size static int s_target_width; static int s_target_height; // The custom resolution static int s_Fulltarget_width; static int s_Fulltarget_height; // TODO: Add functionality to reinit all the render targets when the window is resized. static int s_backbuffer_width; static int s_backbuffer_height; // ratio of backbuffer size and render area size - TODO: Remove these! static float xScale; static float yScale; static unsigned int s_XFB_width; static unsigned int s_XFB_height; // can probably eliminate this static var static int s_LastEFBScale; static bool s_skipSwap; static bool XFBWrited; private: static unsigned int prev_efb_format; }; extern Renderer *g_renderer; void UpdateViewport(); template void GetScissorRect(MathUtil::Rectangle &rect) { const int xoff = bpmem.scissorOffset.x * 2 - 342; const int yoff = bpmem.scissorOffset.y * 2 - 342; rect.left = (R)(bpmem.scissorTL.x - xoff - 342); rect.top = (R)(bpmem.scissorTL.y - yoff - 342); rect.right = (R)(bpmem.scissorBR.x - xoff - 341); rect.bottom = (R)(bpmem.scissorBR.y - yoff - 341); } #endif // _COMMON_RENDERBASE_H_