// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #pragma once #include #include #include #include #include #include #include #include #include "Common/CommonTypes.h" #include "Common/Event.h" #include "Common/Flag.h" #include "Common/MathUtil.h" #include "VideoCommon/AsyncShaderCompiler.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FrameDump.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/TextureConfig.h" class AbstractFramebuffer; class AbstractPipeline; class AbstractShader; class AbstractTexture; class AbstractStagingTexture; class NativeVertexFormat; class NetPlayChatUI; struct TextureConfig; struct ComputePipelineConfig; struct AbstractPipelineConfig; struct PortableVertexDeclaration; enum class ShaderStage; enum class EFBAccessType; enum class EFBReinterpretType; enum class StagingTextureType; namespace VideoCommon { class PostProcessing; } struct EfbPokeData { u16 x, y; u32 data; }; // Renderer really isn't a very good name for this class - it's more like "Misc". // The long term goal is to get rid of this class and replace it with others that make // more sense. class Renderer { public: Renderer(int backbuffer_width, int backbuffer_height, float backbuffer_scale, AbstractTextureFormat backbuffer_format); virtual ~Renderer(); using ClearColor = std::array; virtual bool IsHeadless() const = 0; virtual bool Initialize(); virtual void Shutdown(); virtual void SetPipeline(const AbstractPipeline* pipeline) {} virtual void SetScissorRect(const MathUtil::Rectangle& rc) {} virtual void SetTexture(u32 index, const AbstractTexture* texture) {} virtual void SetSamplerState(u32 index, const SamplerState& state) {} virtual void SetComputeImageTexture(AbstractTexture* texture, bool read, bool write) {} virtual void UnbindTexture(const AbstractTexture* texture) {} virtual void SetViewport(float x, float y, float width, float height, float near_depth, float far_depth) { } virtual void SetFullscreen(bool enable_fullscreen) {} virtual bool IsFullscreen() const { return false; } virtual void BeginUtilityDrawing(); virtual void EndUtilityDrawing(); virtual std::unique_ptr CreateTexture(const TextureConfig& config) = 0; virtual std::unique_ptr CreateStagingTexture(StagingTextureType type, const TextureConfig& config) = 0; virtual std::unique_ptr CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment) = 0; // Framebuffer operations. virtual void SetFramebuffer(AbstractFramebuffer* framebuffer); virtual void SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer); virtual void SetAndClearFramebuffer(AbstractFramebuffer* framebuffer, const ClearColor& color_value = {}, float depth_value = 0.0f); // Drawing with currently-bound pipeline state. virtual void Draw(u32 base_vertex, u32 num_vertices) {} virtual void DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex) {} // Dispatching compute shaders with currently-bound state. virtual void DispatchComputeShader(const AbstractShader* shader, u32 groups_x, u32 groups_y, u32 groups_z) { } // Binds the backbuffer for rendering. The buffer will be cleared immediately after binding. // This is where any window size changes are detected, therefore m_backbuffer_width and/or // m_backbuffer_height may change after this function returns. virtual void BindBackbuffer(const ClearColor& clear_color = {}) {} // Presents the backbuffer to the window system, or "swaps buffers". virtual void PresentBackbuffer() {} // Shader modules/objects. virtual std::unique_ptr CreateShaderFromSource(ShaderStage stage, std::string_view source) = 0; virtual std::unique_ptr CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) = 0; virtual std::unique_ptr CreateNativeVertexFormat(const PortableVertexDeclaration& vtx_decl) = 0; virtual std::unique_ptr CreatePipeline(const AbstractPipelineConfig& config, const void* cache_data = nullptr, size_t cache_data_length = 0) = 0; AbstractFramebuffer* GetCurrentFramebuffer() const { return m_current_framebuffer; } // Ideal internal resolution - multiple of the native EFB resolution int GetTargetWidth() const { return m_target_width; } int GetTargetHeight() const { return m_target_height; } // Display resolution int GetBackbufferWidth() const { return m_backbuffer_width; } int GetBackbufferHeight() const { return m_backbuffer_height; } float GetBackbufferScale() const { return m_backbuffer_scale; } void SetWindowSize(int width, int height); // Sets viewport and scissor to the specified rectangle. rect is assumed to be in framebuffer // coordinates, i.e. lower-left origin in OpenGL. void SetViewportAndScissor(const MathUtil::Rectangle& rect, float min_depth = 0.0f, float max_depth = 1.0f); // Scales a GPU texture using a copy shader. virtual void ScaleTexture(AbstractFramebuffer* dst_framebuffer, const MathUtil::Rectangle& dst_rect, const AbstractTexture* src_texture, const MathUtil::Rectangle& src_rect); // Converts an upper-left to lower-left if required by the backend, optionally // clamping to the framebuffer size. MathUtil::Rectangle ConvertFramebufferRectangle(const MathUtil::Rectangle& rect, u32 fb_width, u32 fb_height); MathUtil::Rectangle ConvertFramebufferRectangle(const MathUtil::Rectangle& rect, const AbstractFramebuffer* framebuffer); // EFB coordinate conversion functions // Use this to convert a whole native EFB rect to backbuffer coordinates MathUtil::Rectangle ConvertEFBRectangle(const MathUtil::Rectangle& rc); const MathUtil::Rectangle& GetTargetRectangle() const { return m_target_rectangle; } float CalculateDrawAspectRatio() const; // Crops the target rectangle to the framebuffer dimensions, reducing the size of the source // rectangle if it is greater. Works even if the source and target rectangles don't have a // 1:1 pixel mapping, scaling as appropriate. void AdjustRectanglesToFitBounds(MathUtil::Rectangle* target_rect, MathUtil::Rectangle* source_rect, int fb_width, int fb_height); std::tuple ScaleToDisplayAspectRatio(int width, int height) const; void UpdateDrawRectangle(); // Use this to convert a single target rectangle to two stereo rectangles std::tuple, MathUtil::Rectangle> ConvertStereoRectangle(const MathUtil::Rectangle& rc) const; unsigned int GetEFBScale() const; // Use this to upscale native EFB coordinates to IDEAL internal resolution int EFBToScaledX(int x) const; int EFBToScaledY(int y) const; // Floating point versions of the above - only use them if really necessary float EFBToScaledXf(float x) const; float EFBToScaledYf(float y) const; // Random utilities void SaveScreenshot(const std::string& filename, bool wait_for_completion); void DrawDebugText(); // ImGui initialization depends on being able to create textures and pipelines, so do it last. bool InitializeImGui(); virtual void ClearScreen(const MathUtil::Rectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z); virtual void ReinterpretPixelData(EFBReinterpretType convtype); void RenderToXFB(u32 xfbAddr, const MathUtil::Rectangle& sourceRc, u32 fbStride, u32 fbHeight, float Gamma = 1.0f); virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data); virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points); virtual u16 BBoxRead(int index) = 0; virtual void BBoxWrite(int index, u16 value) = 0; virtual void BBoxFlush() {} virtual void Flush() {} virtual void WaitForGPUIdle() {} // Finish up the current frame, print some stats void Swap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks); // Draws the specified XFB buffer to the screen, performing any post-processing. // Assumes that the backbuffer has already been bound and cleared. virtual void RenderXFBToScreen(const MathUtil::Rectangle& target_rc, const AbstractTexture* source_texture, const MathUtil::Rectangle& source_rc); // Called when the configuration changes, and backend structures need to be updated. virtual void OnConfigChanged(u32 bits) {} PEControl::PixelFormat GetPrevPixelFormat() const { return m_prev_efb_format; } void StorePixelFormat(PEControl::PixelFormat new_format) { m_prev_efb_format = new_format; } bool EFBHasAlphaChannel() const; VideoCommon::PostProcessing* GetPostProcessor() const { return m_post_processor.get(); } // Final surface changing // This is called when the surface is resized (WX) or the window changes (Android). void ChangeSurface(void* new_surface_handle); void ResizeSurface(); bool UseVertexDepthRange() const; virtual std::unique_ptr CreateAsyncShaderCompiler(); // Returns a lock for the ImGui mutex, enabling data structures to be modified from outside. // Use with care, only non-drawing functions should be called from outside the video thread, // as the drawing is tied to a "frame". std::unique_lock GetImGuiLock(); // Begins/presents a "UI frame". UI frames do not draw any of the console XFB, but this could // change in the future. void BeginUIFrame(); void EndUIFrame(); protected: // Bitmask containing information about which configuration has changed for the backend. enum ConfigChangeBits : u32 { CONFIG_CHANGE_BIT_HOST_CONFIG = (1 << 0), CONFIG_CHANGE_BIT_MULTISAMPLES = (1 << 1), CONFIG_CHANGE_BIT_STEREO_MODE = (1 << 2), CONFIG_CHANGE_BIT_TARGET_SIZE = (1 << 3), CONFIG_CHANGE_BIT_ANISOTROPY = (1 << 4), CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING = (1 << 5), CONFIG_CHANGE_BIT_VSYNC = (1 << 6), CONFIG_CHANGE_BIT_BBOX = (1 << 7) }; std::tuple CalculateTargetScale(int x, int y) const; bool CalculateTargetSize(); void CheckForConfigChanges(); void CheckFifoRecording(); void RecordVideoMemory(); // Sets up ImGui state for the next frame. // This function itself acquires the ImGui lock, so it should not be held. void BeginImGuiFrame(); // Destroys all ImGui GPU resources, must do before shutdown. void ShutdownImGui(); // Renders ImGui windows to the currently-bound framebuffer. // Should be called with the ImGui lock held. void DrawImGui(); AbstractFramebuffer* m_current_framebuffer = nullptr; const AbstractPipeline* m_current_pipeline = nullptr; Common::Flag m_screenshot_request; Common::Event m_screenshot_completed; std::mutex m_screenshot_lock; std::string m_screenshot_name; bool m_aspect_wide = false; // The framebuffer size int m_target_width = 1; int m_target_height = 1; // Backbuffer (window) size and render area int m_backbuffer_width = 0; int m_backbuffer_height = 0; float m_backbuffer_scale = 1.0f; AbstractTextureFormat m_backbuffer_format = AbstractTextureFormat::Undefined; MathUtil::Rectangle m_target_rectangle = {}; int m_frame_count = 0; FPSCounter m_fps_counter; std::unique_ptr m_post_processor; void* m_new_surface_handle = nullptr; Common::Flag m_surface_changed; Common::Flag m_surface_resized; std::mutex m_swap_mutex; // ImGui resources. std::unique_ptr m_imgui_vertex_format; std::vector> m_imgui_textures; std::unique_ptr m_imgui_pipeline; std::mutex m_imgui_mutex; u64 m_imgui_last_frame_time; private: void RunFrameDumps(); std::tuple CalculateOutputDimensions(int width, int height); PEControl::PixelFormat m_prev_efb_format = PEControl::INVALID_FMT; unsigned int m_efb_scale = 1; // These will be set on the first call to SetWindowSize. int m_last_window_request_width = 0; int m_last_window_request_height = 0; // frame dumping std::thread m_frame_dump_thread; Common::Event m_frame_dump_start; Common::Event m_frame_dump_done; Common::Flag m_frame_dump_thread_running; u32 m_frame_dump_image_counter = 0; bool m_frame_dump_frame_running = false; struct FrameDumpConfig { const u8* data; int width; int height; int stride; FrameDump::Frame state; } m_frame_dump_config; // Texture used for screenshot/frame dumping std::unique_ptr m_frame_dump_render_texture; std::unique_ptr m_frame_dump_render_framebuffer; std::array, 2> m_frame_dump_readback_textures; FrameDump::Frame m_last_frame_state; bool m_last_frame_exported = false; // Tracking of XFB textures so we don't render duplicate frames. u64 m_last_xfb_id = std::numeric_limits::max(); // Note: Only used for auto-ir u32 m_last_xfb_width = 0; u32 m_last_xfb_height = 0; // NOTE: The methods below are called on the framedumping thread. bool StartFrameDumpToFFMPEG(const FrameDumpConfig& config); void DumpFrameToFFMPEG(const FrameDumpConfig& config); void StopFrameDumpToFFMPEG(); std::string GetFrameDumpNextImageFileName() const; bool StartFrameDumpToImage(const FrameDumpConfig& config); void DumpFrameToImage(const FrameDumpConfig& config); void ShutdownFrameDumping(); bool IsFrameDumping(); // Checks that the frame dump render texture exists and is the correct size. bool CheckFrameDumpRenderTexture(u32 target_width, u32 target_height); // Checks that the frame dump readback texture exists and is the correct size. bool CheckFrameDumpReadbackTexture(u32 target_width, u32 target_height); // Fills the frame dump staging texture with the current XFB texture. void DumpCurrentFrame(const AbstractTexture* src_texture, const MathUtil::Rectangle& src_rect, u64 ticks); // Asynchronously encodes the specified pointer of frame data to the frame dump. void DumpFrameData(const u8* data, int w, int h, int stride, const FrameDump::Frame& state); // Ensures all rendered frames are queued for encoding. void FlushFrameDump(); // Ensures all encoded frames have been written to the output file. void FinishFrameData(); std::unique_ptr m_netplay_chat_ui; }; extern std::unique_ptr g_renderer;