// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/VertexManagerBase.h" #include #include #include #include "Common/BitSet.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MathUtil.h" #include "Core/ConfigManager.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/GeometryShaderManager.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/OpcodeDecoding.h" #include "VideoCommon/PerfQueryBase.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" std::unique_ptr g_vertex_manager; // GX primitive -> RenderState primitive, no primitive restart constexpr std::array primitive_from_gx{{ PrimitiveType::Triangles, // GX_DRAW_QUADS PrimitiveType::Triangles, // GX_DRAW_QUADS_2 PrimitiveType::Triangles, // GX_DRAW_TRIANGLES PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_STRIP PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_FAN PrimitiveType::Lines, // GX_DRAW_LINES PrimitiveType::Lines, // GX_DRAW_LINE_STRIP PrimitiveType::Points, // GX_DRAW_POINTS }}; // GX primitive -> RenderState primitive, using primitive restart constexpr std::array primitive_from_gx_pr{{ PrimitiveType::TriangleStrip, // GX_DRAW_QUADS PrimitiveType::TriangleStrip, // GX_DRAW_QUADS_2 PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLES PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_STRIP PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_FAN PrimitiveType::Lines, // GX_DRAW_LINES PrimitiveType::Lines, // GX_DRAW_LINE_STRIP PrimitiveType::Points, // GX_DRAW_POINTS }}; // Due to the BT.601 standard which the GameCube is based on being a compromise // between PAL and NTSC, neither standard gets square pixels. They are each off // by ~9% in opposite directions. // Just in case any game decides to take this into account, we do both these // tests with a large amount of slop. static bool AspectIs4_3(float width, float height) { float aspect = fabsf(width / height); return fabsf(aspect - 4.0f / 3.0f) < 4.0f / 3.0f * 0.11; // within 11% of 4:3 } static bool AspectIs16_9(float width, float height) { float aspect = fabsf(width / height); return fabsf(aspect - 16.0f / 9.0f) < 16.0f / 9.0f * 0.11; // within 11% of 16:9 } VertexManagerBase::VertexManagerBase() { } VertexManagerBase::~VertexManagerBase() { } u32 VertexManagerBase::GetRemainingSize() const { return static_cast(m_end_buffer_pointer - m_cur_buffer_pointer); } DataReader VertexManagerBase::PrepareForAdditionalData(int primitive, u32 count, u32 stride, bool cullall) { // The SSE vertex loader can write up to 4 bytes past the end u32 const needed_vertex_bytes = count * stride + 4; // We can't merge different kinds of primitives, so we have to flush here PrimitiveType new_primitive_type = g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? primitive_from_gx_pr[primitive] : primitive_from_gx[primitive]; if (m_current_primitive_type != new_primitive_type) { Flush(); // Have to update the rasterization state for point/line cull modes. RasterizationState raster_state = {}; raster_state.Generate(bpmem, new_primitive_type); g_renderer->SetRasterizationState(raster_state); m_current_primitive_type = new_primitive_type; } // Check for size in buffer, if the buffer gets full, call Flush() if (!m_is_flushed && (count > IndexGenerator::GetRemainingIndices() || count > GetRemainingIndices(primitive) || needed_vertex_bytes > GetRemainingSize())) { Flush(); if (count > IndexGenerator::GetRemainingIndices()) ERROR_LOG(VIDEO, "Too little remaining index values. Use 32-bit or reset them on flush."); if (count > GetRemainingIndices(primitive)) ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all indices! " "Increase MAXIBUFFERSIZE or we need primitive breaking after all."); if (needed_vertex_bytes > GetRemainingSize()) ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all vertices! " "Increase MAXVBUFFERSIZE or we need primitive breaking after all."); } m_cull_all = cullall; // need to alloc new buffer if (m_is_flushed) { g_vertex_manager->ResetBuffer(stride); m_is_flushed = false; } return DataReader(m_cur_buffer_pointer, m_end_buffer_pointer); } void VertexManagerBase::FlushData(u32 count, u32 stride) { m_cur_buffer_pointer += count * stride; } u32 VertexManagerBase::GetRemainingIndices(int primitive) { u32 index_len = MAXIBUFFERSIZE - IndexGenerator::GetIndexLen(); if (g_Config.backend_info.bSupportsPrimitiveRestart) { switch (primitive) { case OpcodeDecoder::GX_DRAW_QUADS: case OpcodeDecoder::GX_DRAW_QUADS_2: return index_len / 5 * 4; case OpcodeDecoder::GX_DRAW_TRIANGLES: return index_len / 4 * 3; case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP: return index_len / 1 - 1; case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN: return index_len / 6 * 4 + 1; case OpcodeDecoder::GX_DRAW_LINES: return index_len; case OpcodeDecoder::GX_DRAW_LINE_STRIP: return index_len / 2 + 1; case OpcodeDecoder::GX_DRAW_POINTS: return index_len; default: return 0; } } else { switch (primitive) { case OpcodeDecoder::GX_DRAW_QUADS: case OpcodeDecoder::GX_DRAW_QUADS_2: return index_len / 6 * 4; case OpcodeDecoder::GX_DRAW_TRIANGLES: return index_len; case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP: return index_len / 3 + 2; case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN: return index_len / 3 + 2; case OpcodeDecoder::GX_DRAW_LINES: return index_len; case OpcodeDecoder::GX_DRAW_LINE_STRIP: return index_len / 2 + 1; case OpcodeDecoder::GX_DRAW_POINTS: return index_len; default: return 0; } } } std::pair VertexManagerBase::ResetFlushAspectRatioCount() { std::pair val = std::make_pair(m_flush_count_4_3, m_flush_count_anamorphic); m_flush_count_4_3 = 0; m_flush_count_anamorphic = 0; return val; } static void SetSamplerState(u32 index, float custom_tex_scale, bool custom_tex, bool has_arbitrary_mips) { const FourTexUnits& tex = bpmem.tex[index / 4]; const TexMode0& tm0 = tex.texMode0[index % 4]; SamplerState state = {}; state.Generate(bpmem, index); // Force texture filtering config option. if (g_ActiveConfig.bForceFiltering) { state.min_filter = SamplerState::Filter::Linear; state.mag_filter = SamplerState::Filter::Linear; state.mipmap_filter = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? SamplerState::Filter::Linear : SamplerState::Filter::Point; } // Custom textures may have a greater number of mips if (custom_tex) state.max_lod = 255; // Anisotropic filtering option. if (g_ActiveConfig.iMaxAnisotropy != 0 && !SamplerCommon::IsBpTexMode0PointFiltering(tm0)) { // https://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt // For predictable results on all hardware/drivers, only use one of: // GL_LINEAR + GL_LINEAR (No Mipmaps [Bilinear]) // GL_LINEAR + GL_LINEAR_MIPMAP_LINEAR (w/ Mipmaps [Trilinear]) // Letting the game set other combinations will have varying arbitrary results; // possibly being interpreted as equal to bilinear/trilinear, implicitly // disabling anisotropy, or changing the anisotropic algorithm employed. state.min_filter = SamplerState::Filter::Linear; state.mag_filter = SamplerState::Filter::Linear; if (SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0)) state.mipmap_filter = SamplerState::Filter::Linear; state.anisotropic_filtering = 1; } else { state.anisotropic_filtering = 0; } if (has_arbitrary_mips && SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0)) { // Apply a secondary bias calculated from the IR scale to pull inwards mipmaps // that have arbitrary contents, eg. are used for fog effects where the // distance they kick in at is important to preserve at any resolution. // Correct this with the upscaling factor of custom textures. s64 lod_offset = std::log2(g_renderer->GetEFBScale() / custom_tex_scale) * 256.f; state.lod_bias = MathUtil::Clamp(state.lod_bias + lod_offset, -32768, 32767); // Anisotropic also pushes mips farther away so it cannot be used either state.anisotropic_filtering = 0; } g_renderer->SetSamplerState(index, state); } void VertexManagerBase::Flush() { if (m_is_flushed) return; // loading a state will invalidate BP, so check for it g_video_backend->CheckInvalidState(); #if defined(_DEBUG) || defined(DEBUGFAST) PRIM_LOG("frame%d:\n texgen=%u, numchan=%u, dualtex=%u, ztex=%u, cole=%u, alpe=%u, ze=%u", g_ActiveConfig.iSaveTargetId, xfmem.numTexGen.numTexGens, xfmem.numChan.numColorChans, xfmem.dualTexTrans.enabled, bpmem.ztex2.op.Value(), bpmem.blendmode.colorupdate.Value(), bpmem.blendmode.alphaupdate.Value(), bpmem.zmode.updateenable.Value()); for (u32 i = 0; i < xfmem.numChan.numColorChans; ++i) { LitChannel* ch = &xfmem.color[i]; PRIM_LOG("colchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i, ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(), ch->diffusefunc.Value(), ch->attnfunc.Value()); ch = &xfmem.alpha[i]; PRIM_LOG("alpchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i, ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(), ch->diffusefunc.Value(), ch->attnfunc.Value()); } for (u32 i = 0; i < xfmem.numTexGen.numTexGens; ++i) { TexMtxInfo tinfo = xfmem.texMtxInfo[i]; if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP) tinfo.hex &= 0x7ff; if (tinfo.texgentype != XF_TEXGEN_REGULAR) tinfo.projection = 0; PRIM_LOG("txgen%u: proj=%u, input=%u, gentype=%u, srcrow=%u, embsrc=%u, emblght=%u, " "postmtx=%u, postnorm=%u", i, tinfo.projection.Value(), tinfo.inputform.Value(), tinfo.texgentype.Value(), tinfo.sourcerow.Value(), tinfo.embosssourceshift.Value(), tinfo.embosslightshift.Value(), xfmem.postMtxInfo[i].index.Value(), xfmem.postMtxInfo[i].normalize.Value()); } PRIM_LOG("pixel: tev=%u, ind=%u, texgen=%u, dstalpha=%u, alphatest=0x%x", bpmem.genMode.numtevstages.Value() + 1, bpmem.genMode.numindstages.Value(), bpmem.genMode.numtexgens.Value(), bpmem.dstalpha.enable.Value(), (bpmem.alpha_test.hex >> 16) & 0xff); #endif // If the primitave is marked CullAll. All we need to do is update the vertex constants and // calculate the zfreeze refrence slope if (!m_cull_all) { BitSet32 usedtextures; for (u32 i = 0; i < bpmem.genMode.numtevstages + 1u; ++i) if (bpmem.tevorders[i / 2].getEnable(i & 1)) usedtextures[bpmem.tevorders[i / 2].getTexMap(i & 1)] = true; if (bpmem.genMode.numindstages > 0) for (unsigned int i = 0; i < bpmem.genMode.numtevstages + 1u; ++i) if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages) usedtextures[bpmem.tevindref.getTexMap(bpmem.tevind[i].bt)] = true; for (unsigned int i : usedtextures) { const auto* tentry = g_texture_cache->Load(i); if (tentry) { float custom_tex_scale = tentry->GetWidth() / float(tentry->native_width); SetSamplerState(i, custom_tex_scale, tentry->is_custom_tex, tentry->has_arbitrary_mips); PixelShaderManager::SetTexDims(i, tentry->native_width, tentry->native_height); } else { ERROR_LOG(VIDEO, "error loading texture"); } } g_texture_cache->BindTextures(); } // set global vertex constants VertexShaderManager::SetConstants(); // Track some stats used elsewhere by the anamorphic widescreen heuristic. if (!SConfig::GetInstance().bWii) { float* rawProjection = xfmem.projection.rawProjection; bool viewport_is_4_3 = AspectIs4_3(xfmem.viewport.wd, xfmem.viewport.ht); if (AspectIs16_9(rawProjection[2], rawProjection[0]) && viewport_is_4_3) { // Projection is 16:9 and viewport is 4:3, we are rendering an anamorphic // widescreen picture. m_flush_count_anamorphic++; } else if (AspectIs4_3(rawProjection[2], rawProjection[0]) && viewport_is_4_3) { // Projection and viewports are both 4:3, we are rendering a normal image. m_flush_count_4_3++; } } // Calculate ZSlope for zfreeze if (!bpmem.genMode.zfreeze) { // Must be done after VertexShaderManager::SetConstants() CalculateZSlope(VertexLoaderManager::GetCurrentVertexFormat()); } else if (m_zslope.dirty && !m_cull_all) // or apply any dirty ZSlopes { PixelShaderManager::SetZSlope(m_zslope.dfdx, m_zslope.dfdy, m_zslope.f0); m_zslope.dirty = false; } if (!m_cull_all) { // set the rest of the global constants GeometryShaderManager::SetConstants(); PixelShaderManager::SetConstants(); if (PerfQueryBase::ShouldEmulate()) g_perf_query->EnableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP); g_vertex_manager->vFlush(); if (PerfQueryBase::ShouldEmulate()) g_perf_query->DisableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP); } GFX_DEBUGGER_PAUSE_AT(NEXT_FLUSH, true); if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens) ERROR_LOG(VIDEO, "xf.numtexgens (%d) does not match bp.numtexgens (%d). Error in command stream.", xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value()); m_is_flushed = true; m_cull_all = false; } void VertexManagerBase::DoState(PointerWrap& p) { p.Do(m_zslope); g_vertex_manager->vDoState(p); } void VertexManagerBase::CalculateZSlope(NativeVertexFormat* format) { float out[12]; float viewOffset[2] = {xfmem.viewport.xOrig - bpmem.scissorOffset.x * 2, xfmem.viewport.yOrig - bpmem.scissorOffset.y * 2}; if (m_current_primitive_type != PrimitiveType::Triangles && m_current_primitive_type != PrimitiveType::TriangleStrip) { return; } // Global matrix ID. u32 mtxIdx = g_main_cp_state.matrix_index_a.PosNormalMtxIdx; const PortableVertexDeclaration vert_decl = format->GetVertexDeclaration(); // Make sure the buffer contains at least 3 vertices. if ((m_cur_buffer_pointer - m_base_buffer_pointer) < (vert_decl.stride * 3)) return; // Lookup vertices of the last rendered triangle and software-transform them // This allows us to determine the depth slope, which will be used if z-freeze // is enabled in the following flush. for (unsigned int i = 0; i < 3; ++i) { // If this vertex format has per-vertex position matrix IDs, look it up. if (vert_decl.posmtx.enable) mtxIdx = VertexLoaderManager::position_matrix_index[3 - i]; if (vert_decl.position.components == 2) VertexLoaderManager::position_cache[2 - i][2] = 0; VertexShaderManager::TransformToClipSpace(&VertexLoaderManager::position_cache[2 - i][0], &out[i * 4], mtxIdx); // Transform to Screenspace float inv_w = 1.0f / out[3 + i * 4]; out[0 + i * 4] = out[0 + i * 4] * inv_w * xfmem.viewport.wd + viewOffset[0]; out[1 + i * 4] = out[1 + i * 4] * inv_w * xfmem.viewport.ht + viewOffset[1]; out[2 + i * 4] = out[2 + i * 4] * inv_w * xfmem.viewport.zRange + xfmem.viewport.farZ; } float dx31 = out[8] - out[0]; float dx12 = out[0] - out[4]; float dy12 = out[1] - out[5]; float dy31 = out[9] - out[1]; float DF31 = out[10] - out[2]; float DF21 = out[6] - out[2]; float a = DF31 * -dy12 - DF21 * dy31; float b = dx31 * DF21 + dx12 * DF31; float c = -dx12 * dy31 - dx31 * -dy12; // Sometimes we process de-generate triangles. Stop any divide by zeros if (c == 0) return; m_zslope.dfdx = -a / c; m_zslope.dfdy = -b / c; m_zslope.f0 = out[2] - (out[0] * m_zslope.dfdx + out[1] * m_zslope.dfdy); m_zslope.dirty = true; }