// Copyright (C) 2003-2009 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Common.h" #include "Rasterizer.h" #include "HwRasterizer.h" #include "EfbInterface.h" #include "BPMemLoader.h" #include "XFMemLoader.h" #include "Tev.h" #include "Statistics.h" #include "VideoConfig.h" #define BLOCK_SIZE 2 #define CLAMP(x, a, b) (x>b)?b:(x> 19) - 2032; // integer part s32 logFract = (*x & 0x007fffff) >> 19; // approximate fractional part return logInt + logFract; } namespace Rasterizer { Slope ZSlope; Slope WSlope; Slope ColorSlopes[2][4]; Slope TexSlopes[8][3]; s32 vertex0X; s32 vertex0Y; float vertexOffsetX; float vertexOffsetY; s32 scissorLeft = 0; s32 scissorTop = 0; s32 scissorRight = 0; s32 scissorBottom = 0; Tev tev; RasterBlock rasterBlock; void Init() { tev.Init(); } inline int iround(float x) { int t; #if defined(_WIN32) && !defined(_M_X64) __asm { fld x fistp t } #else t = (int)x; if((x - t) >= 0.5) return t + 1; #endif return t; } void SetScissor() { int xoff = bpmem.scissorOffset.x * 2 - 342; int yoff = bpmem.scissorOffset.y * 2 - 342; scissorLeft = bpmem.scissorTL.x - xoff - 342; if (scissorLeft < 0) scissorLeft = 0; scissorTop = bpmem.scissorTL.y - yoff - 342; if (scissorTop < 0) scissorTop = 0; scissorRight = bpmem.scissorBR.x - xoff - 341; if (scissorRight > EFB_WIDTH) scissorRight = EFB_WIDTH; scissorBottom = bpmem.scissorBR.y - yoff - 341; if (scissorBottom > EFB_HEIGHT) scissorBottom = EFB_HEIGHT; } void SetTevReg(int reg, int comp, bool konst, s16 color) { tev.SetRegColor(reg, comp, konst, color); } inline void Draw(s32 x, s32 y, s32 xi, s32 yi) { INCSTAT(stats.thisFrame.rasterizedPixels); float dx = vertexOffsetX + (float)(x - vertex0X); float dy = vertexOffsetY + (float)(y - vertex0Y); s32 z = (s32)ZSlope.GetValue(dx, dy); if (z < 0 || z > 0x00ffffff) return; if (bpmem.zcontrol.zcomploc && bpmem.zmode.testenable) { // early z if (!EfbInterface::ZCompare(x, y, z)) return; } RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi]; tev.Position[0] = x; tev.Position[1] = y; tev.Position[2] = z; // colors for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++) { for(int comp = 0; comp < 4; comp++) { u16 color = (u16)ColorSlopes[i][comp].GetValue(dx, dy); // clamp color value to 0 u16 mask = ~(color >> 8); tev.Color[i][comp] = color & mask; } } // tex coords for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++) { // multiply by 128 because TEV stores stores UVs as s17.7 tev.Uv[i].s = (s32)(pixel.Uv[i][0] * 128); tev.Uv[i].t = (s32)(pixel.Uv[i][1] * 128); } for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++) { tev.IndirectLod[i] = rasterBlock.IndirectLod[i]; tev.IndirectLinear[i] = rasterBlock.IndirectLinear[i]; } for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++) { tev.TextureLod[i] = rasterBlock.TextureLod[i]; tev.TextureLinear[i] = rasterBlock.TextureLinear[i]; } tev.Draw(); } void InitTriangle(float X1, float Y1, s32 xi, s32 yi) { vertex0X = xi; vertex0Y = yi; // adjust a little less than 0.5 const float adjust = 0.495f; vertexOffsetX = ((float)xi - X1) + adjust; vertexOffsetY = ((float)yi - Y1) + adjust; } void InitSlope(Slope *slope, float f1, float f2, float f3, float DX31, float DX12, float DY12, float DY31) { float DF31 = f3 - f1; float DF21 = f2 - f1; float a = DF31 * -DY12 - DF21 * DY31; float b = DX31 * DF21 + DX12 * DF31; float c = -DX12 * DY31 - DX31 * -DY12; slope->dfdx = -a / c; slope->dfdy = -b / c; slope->f0 = f1; } inline void CalculateLOD(s32 &lod, bool &linear, u32 texmap, u32 texcoord) { FourTexUnits& texUnit = bpmem.tex[(texmap >> 2) & 1]; u8 subTexmap = texmap & 3; // LOD calculation requires data from the texture mode for bias, etc. // it does not seem to use the actual texture size TexMode0& tm0 = texUnit.texMode0[subTexmap]; TexMode1& tm1 = texUnit.texMode1[subTexmap]; float sDelta, tDelta; if (tm0.diag_lod) { float *uv0 = rasterBlock.Pixel[0][0].Uv[texcoord]; float *uv1 = rasterBlock.Pixel[1][1].Uv[texcoord]; sDelta = fabsf(uv0[0] - uv1[0]); tDelta = fabsf(uv0[1] - uv1[1]); } else { float *uv0 = rasterBlock.Pixel[0][0].Uv[texcoord]; float *uv1 = rasterBlock.Pixel[1][0].Uv[texcoord]; float *uv2 = rasterBlock.Pixel[0][1].Uv[texcoord]; sDelta = max(fabsf(uv0[0] - uv1[0]), fabsf(uv0[0] - uv2[0])); tDelta = max(fabsf(uv0[1] - uv1[1]), fabsf(uv0[1] - uv2[1])); } // get LOD in s28.4 lod = FixedLog2(max(sDelta, tDelta)); // bias is s2.5 int bias = tm0.lod_bias; bias >>= 1; lod += bias; linear = ((lod > 0 && (tm0.min_filter & 4)) || (lod <= 0 && tm0.mag_filter)); // order of checks matters // should be: // if lod > max then max // else if lod < min then min lod = CLAMP(lod, (s32)tm1.min_lod, (s32)tm1.max_lod); } void BuildBlock(s32 blockX, s32 blockY) { for (s32 yi = 0; yi < BLOCK_SIZE; yi++) { for (s32 xi = 0; xi < BLOCK_SIZE; xi++) { RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi]; float dx = vertexOffsetX + (float)(xi + blockX - vertex0X); float dy = vertexOffsetY + (float)(yi + blockY - vertex0Y); float invW = 1.0f / WSlope.GetValue(dx, dy); pixel.InvW = invW; // tex coords for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++) { float projection; if (xfregs.texMtxInfo[i].projection) { float q = TexSlopes[i][2].GetValue(dx, dy) * invW; projection = invW / q; } else projection = invW; pixel.Uv[i][0] = TexSlopes[i][0].GetValue(dx, dy) * projection; pixel.Uv[i][1] = TexSlopes[i][1].GetValue(dx, dy) * projection; } } } u32 indref = bpmem.tevindref.hex; for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++) { u32 texmap = indref & 3; indref >>= 3; u32 texcoord = indref & 3; indref >>= 3; CalculateLOD(rasterBlock.IndirectLod[i], rasterBlock.IndirectLinear[i], texmap, texcoord); } for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++) { int stageOdd = i&1; TwoTevStageOrders &order = bpmem.tevorders[i >> 1]; if(order.getEnable(stageOdd)) { u32 texmap = order.getTexMap(stageOdd); u32 texcoord = order.getTexCoord(stageOdd); CalculateLOD(rasterBlock.TextureLod[i], rasterBlock.TextureLinear[i], texmap, texcoord); } } } void DrawTriangleFrontFace(OutputVertexData *v0, OutputVertexData *v1, OutputVertexData *v2) { INCSTAT(stats.thisFrame.numTrianglesDrawn); if (g_SWVideoConfig.bHwRasterizer) { HwRasterizer::DrawTriangleFrontFace(v0, v1, v2); return; } // adapted from http://www.devmaster.net/forums/showthread.php?t=1884 // 28.4 fixed-pou32 coordinates. rounded to nearest and adjusted to match hardware output // could also take floor and adjust -8 const s32 Y1 = iround(16.0f * v0->screenPosition[1]) - 9; const s32 Y2 = iround(16.0f * v1->screenPosition[1]) - 9; const s32 Y3 = iround(16.0f * v2->screenPosition[1]) - 9; const s32 X1 = iround(16.0f * v0->screenPosition[0]) - 9; const s32 X2 = iround(16.0f * v1->screenPosition[0]) - 9; const s32 X3 = iround(16.0f * v2->screenPosition[0]) - 9; // Deltas const s32 DX12 = X1 - X2; const s32 DX23 = X2 - X3; const s32 DX31 = X3 - X1; const s32 DY12 = Y1 - Y2; const s32 DY23 = Y2 - Y3; const s32 DY31 = Y3 - Y1; // Fixed-pos32 deltas const s32 FDX12 = DX12 << 4; const s32 FDX23 = DX23 << 4; const s32 FDX31 = DX31 << 4; const s32 FDY12 = DY12 << 4; const s32 FDY23 = DY23 << 4; const s32 FDY31 = DY31 << 4; // Bounding rectangle s32 minx = (min(min(X1, X2), X3) + 0xF) >> 4; s32 maxx = (max(max(X1, X2), X3) + 0xF) >> 4; s32 miny = (min(min(Y1, Y2), Y3) + 0xF) >> 4; s32 maxy = (max(max(Y1, Y2), Y3) + 0xF) >> 4; // scissor minx = max(minx, scissorLeft); maxx = min(maxx, scissorRight); miny = max(miny, scissorTop); maxy = min(maxy, scissorBottom); if (minx >= maxx || miny >= maxy) return; // Setup slopes float fltx1 = v0->screenPosition.x; float flty1 = v0->screenPosition.y; float fltdx31 = v2->screenPosition.x - fltx1; float fltdx12 = fltx1 - v1->screenPosition.x; float fltdy12 = flty1 - v1->screenPosition.y; float fltdy31 = v2->screenPosition.y - flty1; InitTriangle(fltx1, flty1, (X1 + 0xF) >> 4, (Y1 + 0xF) >> 4); float w[3] = { 1.0f / v0->projectedPosition.w, 1.0f / v1->projectedPosition.w, 1.0f / v2->projectedPosition.w }; InitSlope(&WSlope, w[0], w[1], w[2], fltdx31, fltdx12, fltdy12, fltdy31); InitSlope(&ZSlope, v0->screenPosition[2], v1->screenPosition[2], v2->screenPosition[2], fltdx31, fltdx12, fltdy12, fltdy31); for(unsigned int i = 0; i < bpmem.genMode.numcolchans; i++) { for(int comp = 0; comp < 4; comp++) InitSlope(&ColorSlopes[i][comp], v0->color[i][comp], v1->color[i][comp], v2->color[i][comp], fltdx31, fltdx12, fltdy12, fltdy31); } for(unsigned int i = 0; i < bpmem.genMode.numtexgens; i++) { for(int comp = 0; comp < 3; comp++) InitSlope(&TexSlopes[i][comp], v0->texCoords[i][comp] * w[0], v1->texCoords[i][comp] * w[1], v2->texCoords[i][comp] * w[2], fltdx31, fltdx12, fltdy12, fltdy31); } // Start in corner of 8x8 block minx &= ~(BLOCK_SIZE - 1); miny &= ~(BLOCK_SIZE - 1); // Half-edge constants s32 C1 = DY12 * X1 - DX12 * Y1; s32 C2 = DY23 * X2 - DX23 * Y2; s32 C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if(DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if(DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if(DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // Loop through blocks for(s32 y = miny; y < maxy; y += BLOCK_SIZE) { for(s32 x = minx; x < maxx; x += BLOCK_SIZE) { // Corners of block s32 x0 = x << 4; s32 x1 = (x + BLOCK_SIZE - 1) << 4; s32 y0 = y << 4; s32 y1 = (y + BLOCK_SIZE - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Skip block when outside an edge if(a == 0x0 || b == 0x0 || c == 0x0) continue; BuildBlock(x, y); // Accept whole block when totally covered if(a == 0xF && b == 0xF && c == 0xF) { for(s32 iy = 0; iy < BLOCK_SIZE; iy++) { for(s32 ix = 0; ix < BLOCK_SIZE; ix++) { Draw(x + ix, y + iy, ix, iy); } } } else // Partially covered block { s32 CY1 = C1 + DX12 * y0 - DY12 * x0; s32 CY2 = C2 + DX23 * y0 - DY23 * x0; s32 CY3 = C3 + DX31 * y0 - DY31 * x0; for(s32 iy = 0; iy < BLOCK_SIZE; iy++) { s32 CX1 = CY1; s32 CX2 = CY2; s32 CX3 = CY3; for(s32 ix = 0; ix < BLOCK_SIZE; ix++) { if(CX1 > 0 && CX2 > 0 && CX3 > 0) { Draw(x + ix, y + iy, ix, iy); } CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; } } } } } }