// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include #include #include #include "InputCommon/ControllerInterface/ExpressionParser.h" using namespace ciface::Core; namespace ciface { namespace ExpressionParser { enum TokenType { TOK_DISCARD, TOK_INVALID, TOK_EOF, TOK_LPAREN, TOK_RPAREN, TOK_AND, TOK_OR, TOK_NOT, TOK_ADD, TOK_CONTROL, }; inline std::string OpName(TokenType op) { switch (op) { case TOK_AND: return "And"; case TOK_OR: return "Or"; case TOK_NOT: return "Not"; case TOK_ADD: return "Add"; default: assert(false); return ""; } } class Token { public: TokenType type; ControlQualifier qualifier; Token(TokenType type_) : type(type_) {} Token(TokenType type_, ControlQualifier qualifier_) : type(type_), qualifier(qualifier_) {} operator std::string() { switch (type) { case TOK_INVALID: return "Invalid"; case TOK_DISCARD: return "Discard"; case TOK_EOF: return "EOF"; case TOK_LPAREN: return "("; case TOK_RPAREN: return ")"; case TOK_AND: return "&"; case TOK_OR: return "|"; case TOK_NOT: return "!"; case TOK_ADD: return "+"; case TOK_CONTROL: return "Device(" + (std::string)qualifier + ")"; } } }; class Lexer { public: std::string expr; std::string::iterator it; Lexer(std::string expr_) : expr(expr_) { it = expr.begin(); } bool FetchBacktickString(std::string &value, char otherDelim = 0) { value = ""; while (it != expr.end()) { char c = *it; ++it; if (c == '`') return false; if (c > 0 && c == otherDelim) return true; value += c; } return false; } Token GetFullyQualifiedControl() { ControlQualifier qualifier; std::string value; if (FetchBacktickString(value, ':')) { // Found colon, this is the device name qualifier.has_device = true; qualifier.device_qualifier.FromString(value); FetchBacktickString(value); } qualifier.control_name = value; return Token(TOK_CONTROL, qualifier); } Token GetBarewordsControl(char c) { std::string name; name += c; while (it != expr.end()) { c = *it; if (!isalpha(c)) break; name += c; ++it; } ControlQualifier qualifier; qualifier.control_name = name; return Token(TOK_CONTROL, qualifier); } Token NextToken() { if (it == expr.end()) return Token(TOK_EOF); char c = *it++; switch (c) { case ' ': case '\t': case '\n': case '\r': return Token(TOK_DISCARD); case '(': return Token(TOK_LPAREN); case ')': return Token(TOK_RPAREN); case '&': return Token(TOK_AND); case '|': return Token(TOK_OR); case '!': return Token(TOK_NOT); case '+': return Token(TOK_ADD); case '`': return GetFullyQualifiedControl(); default: if (isalpha(c)) return GetBarewordsControl(c); else return Token(TOK_INVALID); } } ExpressionParseStatus Tokenize(std::vector &tokens) { while (true) { Token tok = NextToken(); if (tok.type == TOK_DISCARD) continue; if (tok.type == TOK_INVALID) { tokens.clear(); return EXPRESSION_PARSE_SYNTAX_ERROR; } tokens.push_back(tok); if (tok.type == TOK_EOF) break; } return EXPRESSION_PARSE_SUCCESS; } }; class ExpressionNode { public: virtual ~ExpressionNode() {} virtual ControlState GetValue() { return 0; } virtual void SetValue(ControlState state) {} virtual int CountNumControls() { return 0; } virtual operator std::string() { return ""; } }; class DummyExpression : public ExpressionNode { public: std::string name; DummyExpression(const std::string& name_) : name(name_) {} ControlState GetValue() override { return 0.0; } void SetValue(ControlState value) override { } int CountNumControls() override { return 0; } operator std::string() override { return "`" + name + "`"; } }; class ControlExpression : public ExpressionNode { public: ControlQualifier qualifier; Device::Control *control; ControlExpression(ControlQualifier qualifier_, Device::Control *control_) : qualifier(qualifier_), control(control_) {} virtual ControlState GetValue() override { return control->ToInput()->GetGatedState(); } virtual void SetValue(ControlState value) override { control->ToOutput()->SetGatedState(value); } virtual int CountNumControls() override { return 1; } virtual operator std::string() override { return "`" + (std::string)qualifier + "`"; } }; class BinaryExpression : public ExpressionNode { public: TokenType op; ExpressionNode *lhs; ExpressionNode *rhs; BinaryExpression(TokenType op_, ExpressionNode *lhs_, ExpressionNode *rhs_) : op(op_), lhs(lhs_), rhs(rhs_) {} virtual ~BinaryExpression() { delete lhs; delete rhs; } virtual ControlState GetValue() override { ControlState lhsValue = lhs->GetValue(); ControlState rhsValue = rhs->GetValue(); switch (op) { case TOK_AND: return std::min(lhsValue, rhsValue); case TOK_OR: return std::max(lhsValue, rhsValue); case TOK_ADD: return std::min(lhsValue + rhsValue, 1.0); default: assert(false); return 0; } } virtual void SetValue(ControlState value) override { // Don't do anything special with the op we have. // Treat "A & B" the same as "A | B". lhs->SetValue(value); rhs->SetValue(value); } virtual int CountNumControls() override { return lhs->CountNumControls() + rhs->CountNumControls(); } virtual operator std::string() override { return OpName(op) + "(" + (std::string)(*lhs) + ", " + (std::string)(*rhs) + ")"; } }; class UnaryExpression : public ExpressionNode { public: TokenType op; ExpressionNode *inner; UnaryExpression(TokenType op_, ExpressionNode *inner_) : op(op_), inner(inner_) {} virtual ~UnaryExpression() { delete inner; } virtual ControlState GetValue() override { ControlState value = inner->GetValue(); switch (op) { case TOK_NOT: return 1.0 - value; default: assert(false); return 0; } } virtual void SetValue(ControlState value) override { switch (op) { case TOK_NOT: inner->SetValue(1.0 - value); break; default: assert(false); } } virtual int CountNumControls() override { return inner->CountNumControls(); } virtual operator std::string() override { return OpName(op) + "(" + (std::string)(*inner) + ")"; } }; Device *ControlFinder::FindDevice(ControlQualifier qualifier) { if (qualifier.has_device) return container.FindDevice(qualifier.device_qualifier); else return container.FindDevice(default_device); } Device::Control *ControlFinder::FindControl(ControlQualifier qualifier) { Device *device = FindDevice(qualifier); if (!device) return nullptr; if (is_input) return device->FindInput(qualifier.control_name); else return device->FindOutput(qualifier.control_name); } class Parser { public: Parser(std::vector tokens_, ControlFinder &finder_) : tokens(tokens_), finder(finder_) { m_it = tokens.begin(); } ExpressionParseStatus Parse(Expression **expr_out) { ExpressionNode *node; ExpressionParseStatus status = Toplevel(&node); if (status != EXPRESSION_PARSE_SUCCESS) return status; *expr_out = new Expression(node); return EXPRESSION_PARSE_SUCCESS; } private: std::vector tokens; std::vector::iterator m_it; ControlFinder &finder; Token Chew() { return *m_it++; } Token Peek() { return *m_it; } bool Expects(TokenType type) { Token tok = Chew(); return tok.type == type; } ExpressionParseStatus Atom(ExpressionNode **expr_out) { Token tok = Chew(); switch (tok.type) { case TOK_CONTROL: { Device::Control *control = finder.FindControl(tok.qualifier); if (control == nullptr) { *expr_out = new DummyExpression(tok.qualifier); return EXPRESSION_PARSE_SUCCESS; } *expr_out = new ControlExpression(tok.qualifier, control); return EXPRESSION_PARSE_SUCCESS; } case TOK_LPAREN: return Paren(expr_out); default: return EXPRESSION_PARSE_SYNTAX_ERROR; } } bool IsUnaryExpression(TokenType type) { switch (type) { case TOK_NOT: return true; default: return false; } } ExpressionParseStatus Unary(ExpressionNode **expr_out) { ExpressionParseStatus status; if (IsUnaryExpression(Peek().type)) { Token tok = Chew(); ExpressionNode *atom_expr; if ((status = Atom(&atom_expr)) != EXPRESSION_PARSE_SUCCESS) return status; *expr_out = new UnaryExpression(tok.type, atom_expr); return EXPRESSION_PARSE_SUCCESS; } return Atom(expr_out); } bool IsBinaryToken(TokenType type) { switch (type) { case TOK_AND: case TOK_OR: case TOK_ADD: return true; default: return false; } } ExpressionParseStatus Binary(ExpressionNode **expr_out) { ExpressionParseStatus status; if ((status = Unary(expr_out)) != EXPRESSION_PARSE_SUCCESS) return status; while (IsBinaryToken(Peek().type)) { Token tok = Chew(); ExpressionNode *unary_expr; if ((status = Unary(&unary_expr)) != EXPRESSION_PARSE_SUCCESS) { delete *expr_out; return status; } *expr_out = new BinaryExpression(tok.type, *expr_out, unary_expr); } return EXPRESSION_PARSE_SUCCESS; } ExpressionParseStatus Paren(ExpressionNode **expr_out) { ExpressionParseStatus status; // lparen already chewed if ((status = Toplevel(expr_out)) != EXPRESSION_PARSE_SUCCESS) return status; if (!Expects(TOK_RPAREN)) { delete *expr_out; return EXPRESSION_PARSE_SYNTAX_ERROR; } return EXPRESSION_PARSE_SUCCESS; } ExpressionParseStatus Toplevel(ExpressionNode **expr_out) { return Binary(expr_out); } }; ControlState Expression::GetValue() { return node->GetValue(); } void Expression::SetValue(ControlState value) { node->SetValue(value); } Expression::Expression(ExpressionNode *node_) { node = node_; num_controls = node->CountNumControls(); } Expression::~Expression() { delete node; } static ExpressionParseStatus ParseExpressionInner(std::string str, ControlFinder &finder, Expression **expr_out) { ExpressionParseStatus status; Expression *expr; *expr_out = nullptr; if (str == "") return EXPRESSION_PARSE_SUCCESS; Lexer l(str); std::vector tokens; status = l.Tokenize(tokens); if (status != EXPRESSION_PARSE_SUCCESS) return status; Parser p(tokens, finder); status = p.Parse(&expr); if (status != EXPRESSION_PARSE_SUCCESS) return status; *expr_out = expr; return EXPRESSION_PARSE_SUCCESS; } ExpressionParseStatus ParseExpression(std::string str, ControlFinder &finder, Expression **expr_out) { // Add compatibility with old simple expressions, which are simple // barewords control names. ControlQualifier qualifier; qualifier.control_name = str; qualifier.has_device = false; Device::Control *control = finder.FindControl(qualifier); if (control) { *expr_out = new Expression(new ControlExpression(qualifier, control)); return EXPRESSION_PARSE_SUCCESS; } return ParseExpressionInner(str, finder, expr_out); } } }