// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include "Common/BitSet.h" #include "Common/CommonTypes.h" #include "Common/MathUtil.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderGen.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" static float GC_ALIGNED16(g_fProjectionMatrix[16]); // track changes static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged; static BitSet32 nMaterialsChanged; static int nTransformMatricesChanged[2]; // min,max static int nNormalMatricesChanged[2]; // min,max static int nPostTransformMatricesChanged[2]; // min,max static int nLightsChanged[2]; // min,max static Matrix44 s_viewportCorrection; static Matrix33 s_viewRotationMatrix; static Matrix33 s_viewInvRotationMatrix; static float s_fViewTranslationVector[3]; static float s_fViewRotation[2]; VertexShaderConstants VertexShaderManager::constants; bool VertexShaderManager::dirty; struct ProjectionHack { float sign; float value; ProjectionHack() { } ProjectionHack(float new_sign, float new_value) : sign(new_sign), value(new_value) {} }; namespace { // Control Variables static ProjectionHack g_ProjHack1; static ProjectionHack g_ProjHack2; } // Namespace static float PHackValue(std::string sValue) { float f = 0; bool fp = false; const char *cStr = sValue.c_str(); char *c = new char[strlen(cStr)+1]; std::istringstream sTof(""); for (unsigned int i=0; i<=strlen(cStr); ++i) { if (i == 20) { c[i] = '\0'; break; } c[i] = (cStr[i] == ',') ? '.' : *(cStr+i); if (c[i] == '.') fp = true; } cStr = c; sTof.str(cStr); sTof >> f; if (!fp) f /= 0xF4240; delete [] c; return f; } void UpdateProjectionHack(int iPhackvalue[], std::string sPhackvalue[]) { float fhackvalue1 = 0, fhackvalue2 = 0; float fhacksign1 = 1.0, fhacksign2 = 1.0; const char *sTemp[2]; if (iPhackvalue[0] == 1) { NOTICE_LOG(VIDEO, "\t\t--- Orthographic Projection Hack ON ---"); fhacksign1 *= (iPhackvalue[1] == 1) ? -1.0f : fhacksign1; sTemp[0] = (iPhackvalue[1] == 1) ? " * (-1)" : ""; fhacksign2 *= (iPhackvalue[2] == 1) ? -1.0f : fhacksign2; sTemp[1] = (iPhackvalue[2] == 1) ? " * (-1)" : ""; fhackvalue1 = PHackValue(sPhackvalue[0]); NOTICE_LOG(VIDEO, "- zNear Correction = (%f + zNear)%s", fhackvalue1, sTemp[0]); fhackvalue2 = PHackValue(sPhackvalue[1]); NOTICE_LOG(VIDEO, "- zFar Correction = (%f + zFar)%s", fhackvalue2, sTemp[1]); } // Set the projections hacks g_ProjHack1 = ProjectionHack(fhacksign1, fhackvalue1); g_ProjHack2 = ProjectionHack(fhacksign2, fhackvalue2); } // Viewport correction: // In D3D, the viewport rectangle must fit within the render target. // Say you want a viewport at (ix, iy) with size (iw, ih), // but your viewport must be clamped at (ax, ay) with size (aw, ah). // Just multiply the projection matrix with the following to get the same // effect: // [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ] // [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ] // [ 0 0 1 0 ] // [ 0 0 0 1 ] static void ViewportCorrectionMatrix(Matrix44& result) { int scissorXOff = bpmem.scissorOffset.x * 2; int scissorYOff = bpmem.scissorOffset.y * 2; // TODO: ceil, floor or just cast to int? // TODO: Directly use the floats instead of rounding them? float intendedX = xfmem.viewport.xOrig - xfmem.viewport.wd - scissorXOff; float intendedY = xfmem.viewport.yOrig + xfmem.viewport.ht - scissorYOff; float intendedWd = 2.0f * xfmem.viewport.wd; float intendedHt = -2.0f * xfmem.viewport.ht; if (intendedWd < 0.f) { intendedX += intendedWd; intendedWd = -intendedWd; } if (intendedHt < 0.f) { intendedY += intendedHt; intendedHt = -intendedHt; } // fit to EFB size float X = (intendedX >= 0.f) ? intendedX : 0.f; float Y = (intendedY >= 0.f) ? intendedY : 0.f; float Wd = (X + intendedWd <= EFB_WIDTH) ? intendedWd : (EFB_WIDTH - X); float Ht = (Y + intendedHt <= EFB_HEIGHT) ? intendedHt : (EFB_HEIGHT - Y); Matrix44::LoadIdentity(result); if (Wd == 0 || Ht == 0) return; result.data[4*0+0] = intendedWd / Wd; result.data[4*0+3] = (intendedWd - 2.f * (X - intendedX)) / Wd - 1.f; result.data[4*1+1] = intendedHt / Ht; result.data[4*1+3] = (-intendedHt + 2.f * (Y - intendedY)) / Ht + 1.f; } void VertexShaderManager::Init() { Dirty(); memset(&xfmem, 0, sizeof(xfmem)); memset(&constants, 0 , sizeof(constants)); ResetView(); // TODO: should these go inside ResetView()? Matrix44::LoadIdentity(s_viewportCorrection); memset(g_fProjectionMatrix, 0, sizeof(g_fProjectionMatrix)); for (int i = 0; i < 4; ++i) g_fProjectionMatrix[i*5] = 1.0f; } void VertexShaderManager::Shutdown() { } void VertexShaderManager::Dirty() { nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256; nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96; nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256; nLightsChanged[0] = 0; nLightsChanged[1] = 0x80; bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; bTexMatricesChanged[1] = true; bProjectionChanged = true; nMaterialsChanged = BitSet32::AllTrue(4); dirty = true; } // Syncs the shader constant buffers with xfmem // TODO: A cleaner way to control the matrices without making a mess in the parameters field void VertexShaderManager::SetConstants() { if (nTransformMatricesChanged[0] >= 0) { int startn = nTransformMatricesChanged[0] / 4; int endn = (nTransformMatricesChanged[1] + 3) / 4; memcpy(constants.transformmatrices[startn], &xfmem.posMatrices[startn * 4], (endn - startn) * 16); dirty = true; nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; } if (nNormalMatricesChanged[0] >= 0) { int startn = nNormalMatricesChanged[0] / 3; int endn = (nNormalMatricesChanged[1] + 2) / 3; for (int i=startn; i= 0) { int startn = nPostTransformMatricesChanged[0] / 4; int endn = (nPostTransformMatricesChanged[1] + 3 ) / 4; memcpy(constants.posttransformmatrices[startn], &xfmem.postMatrices[startn * 4], (endn - startn) * 16); dirty = true; nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1; } if (nLightsChanged[0] >= 0) { // TODO: Outdated comment // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0] / 0x10; int iend = (nLightsChanged[1] + 15) / 0x10; for (int i = istart; i < iend; ++i) { const Light& light = xfmem.lights[i]; VertexShaderConstants::Light& dstlight = constants.lights[i]; // xfmem.light.color is packed as abgr in u8[4], so we have to swap the order dstlight.color[0] = light.color[3]; dstlight.color[1] = light.color[2]; dstlight.color[2] = light.color[1]; dstlight.color[3] = light.color[0]; dstlight.cosatt[0] = light.cosatt[0]; dstlight.cosatt[1] = light.cosatt[1]; dstlight.cosatt[2] = light.cosatt[2]; if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f && fabs(light.distatt[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! dstlight.distatt[0] = .00001f; } else { dstlight.distatt[0] = light.distatt[0]; } dstlight.distatt[1] = light.distatt[1]; dstlight.distatt[2] = light.distatt[2]; dstlight.pos[0] = light.dpos[0]; dstlight.pos[1] = light.dpos[1]; dstlight.pos[2] = light.dpos[2]; double norm = double(light.ddir[0]) * double(light.ddir[0]) + double(light.ddir[1]) * double(light.ddir[1]) + double(light.ddir[2]) * double(light.ddir[2]); norm = 1.0 / sqrt(norm); float norm_float = static_cast(norm); dstlight.dir[0] = light.ddir[0] * norm_float; dstlight.dir[1] = light.ddir[1] * norm_float; dstlight.dir[2] = light.ddir[2] * norm_float; } dirty = true; nLightsChanged[0] = nLightsChanged[1] = -1; } for (int i : nMaterialsChanged) { u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i]; constants.materials[i][0] = (data >> 24) & 0xFF; constants.materials[i][1] = (data >> 16) & 0xFF; constants.materials[i][2] = (data >> 8) & 0xFF; constants.materials[i][3] = data & 0xFF; dirty = true; } nMaterialsChanged = BitSet32(0); if (bPosNormalMatrixChanged) { bPosNormalMatrixChanged = false; const float *pos = (const float *)xfmem.posMatrices + g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4; const float *norm = (const float *)xfmem.normalMatrices + 3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31); memcpy(constants.posnormalmatrix, pos, 3*16); memcpy(constants.posnormalmatrix[3], norm, 12); memcpy(constants.posnormalmatrix[4], norm+3, 12); memcpy(constants.posnormalmatrix[5], norm+6, 12); dirty = true; } if (bTexMatricesChanged[0]) { bTexMatricesChanged[0] = false; const float *fptrs[] = { (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4], (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4], (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4], (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4] }; for (int i = 0; i < 4; ++i) { memcpy(constants.texmatrices[3*i], fptrs[i], 3*16); } dirty = true; } if (bTexMatricesChanged[1]) { bTexMatricesChanged[1] = false; const float *fptrs[] = { (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4], (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4], (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4], (const float *)&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4] }; for (int i = 0; i < 4; ++i) { memcpy(constants.texmatrices[3*i+12], fptrs[i], 3*16); } dirty = true; } if (bViewportChanged) { bViewportChanged = false; constants.depthparams[0] = xfmem.viewport.farZ / 16777216.0f; constants.depthparams[1] = xfmem.viewport.zRange / 16777216.0f; // The console GPU places the pixel center at 7/12 unless antialiasing // is enabled, while D3D and OpenGL place it at 0.5. See the comment // in VertexShaderGen.cpp for details. // NOTE: If we ever emulate antialiasing, the sample locations set by // BP registers 0x01-0x04 need to be considered here. const float pixel_center_correction = 7.0f / 12.0f - 0.5f; const float pixel_size_x = 2.f / Renderer::EFBToScaledXf(2.f * xfmem.viewport.wd); const float pixel_size_y = 2.f / Renderer::EFBToScaledXf(2.f * xfmem.viewport.ht); constants.depthparams[2] = pixel_center_correction * pixel_size_x; constants.depthparams[3] = pixel_center_correction * pixel_size_y; dirty = true; // This is so implementation-dependent that we can't have it here. g_renderer->SetViewport(); // Update projection if the viewport isn't 1:1 useable if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports) { ViewportCorrectionMatrix(s_viewportCorrection); bProjectionChanged = true; } } if (bProjectionChanged) { bProjectionChanged = false; float *rawProjection = xfmem.projection.rawProjection; switch (xfmem.projection.type) { case GX_PERSPECTIVE: g_fProjectionMatrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = rawProjection[1]; g_fProjectionMatrix[3] = 0.0f; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH; g_fProjectionMatrix[6] = rawProjection[3]; g_fProjectionMatrix[7] = 0.0f; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = rawProjection[4]; g_fProjectionMatrix[11] = rawProjection[5]; g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; // donkopunchstania suggested the GC GPU might round differently // He had thus changed this to -(1 + epsilon) to fix clipping issues. // I (neobrain) don't think his conjecture is true and thus reverted his change. g_fProjectionMatrix[14] = -1.0f; g_fProjectionMatrix[15] = 0.0f; SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]); SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]); SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]); SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]); SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]); SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]); SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]); SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]); SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]); SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]); SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]); SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]); SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]); SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]); SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]); SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]); break; case GX_ORTHOGRAPHIC: g_fProjectionMatrix[0] = rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = 0.0f; g_fProjectionMatrix[3] = rawProjection[1]; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = rawProjection[2]; g_fProjectionMatrix[6] = 0.0f; g_fProjectionMatrix[7] = rawProjection[3]; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = (g_ProjHack1.value + rawProjection[4]) * ((g_ProjHack1.sign == 0) ? 1.0f : g_ProjHack1.sign); g_fProjectionMatrix[11] = (g_ProjHack2.value + rawProjection[5]) * ((g_ProjHack2.sign == 0) ? 1.0f : g_ProjHack2.sign); g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; g_fProjectionMatrix[14] = 0.0f; g_fProjectionMatrix[15] = 1.0f; SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]); SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]); SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]); SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]); SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]); SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]); SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]); SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]); SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]); SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]); SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]); SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]); SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]); SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]); SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]); SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]); SETSTAT_FT(stats.proj_0, rawProjection[0]); SETSTAT_FT(stats.proj_1, rawProjection[1]); SETSTAT_FT(stats.proj_2, rawProjection[2]); SETSTAT_FT(stats.proj_3, rawProjection[3]); SETSTAT_FT(stats.proj_4, rawProjection[4]); SETSTAT_FT(stats.proj_5, rawProjection[5]); break; default: ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type); } PRIM_LOG("Projection: %f %f %f %f %f %f\n", rawProjection[0], rawProjection[1], rawProjection[2], rawProjection[3], rawProjection[4], rawProjection[5]); if (g_ActiveConfig.bFreeLook && xfmem.projection.type == GX_PERSPECTIVE) { Matrix44 mtxA; Matrix44 mtxB; Matrix44 viewMtx; Matrix44::Translate(mtxA, s_fViewTranslationVector); Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix); Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation Matrix44::Set(mtxB, g_fProjectionMatrix); Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view Matrix44::Multiply(s_viewportCorrection, mtxA, mtxB); // mtxB = viewportCorrection x mtxA memcpy(constants.projection, mtxB.data, 4*16); } else { Matrix44 projMtx; Matrix44::Set(projMtx, g_fProjectionMatrix); Matrix44 correctedMtx; Matrix44::Multiply(s_viewportCorrection, projMtx, correctedMtx); memcpy(constants.projection, correctedMtx.data, 4*16); } if (g_ActiveConfig.bStereo && xfmem.projection.type == GX_PERSPECTIVE) { float offset = g_ActiveConfig.iStereoSeparation / (200.0f * g_ActiveConfig.iStereoFocalLength); constants.stereooffset[0] = offset; constants.stereooffset[1] = -offset; } else { constants.stereooffset[0] = constants.stereooffset[1] = 0; } dirty = true; } } void VertexShaderManager::InvalidateXFRange(int start, int end) { if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 + 12) || ((u32)start >= XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 && (u32)start < XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 + 9)) { bPosNormalMatrixChanged = true; } if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx*4+12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx*4+12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx*4+12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx*4+12)) { bTexMatricesChanged[0] = true; } if (((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx*4+12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx*4+12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx*4+12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx*4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx*4+12)) { bTexMatricesChanged[1] = true; } if (start < XFMEM_POSMATRICES_END) { if (nTransformMatricesChanged[0] == -1) { nTransformMatricesChanged[0] = start; nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } else { if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start; if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } } if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) { int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES; int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES; if (nNormalMatricesChanged[0] == -1) { nNormalMatricesChanged[0] = _start; nNormalMatricesChanged[1] = _end; } else { if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start; if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end; } } if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) { int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES; int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES; if (nPostTransformMatricesChanged[0] == -1) { nPostTransformMatricesChanged[0] = _start; nPostTransformMatricesChanged[1] = _end; } else { if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start; if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end; } } if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS; if (nLightsChanged[0] == -1 ) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void VertexShaderManager::SetTexMatrixChangedA(u32 Value) { if (g_main_cp_state.matrix_index_a.Hex != Value) { VertexManager::Flush(); if (g_main_cp_state.matrix_index_a.PosNormalMtxIdx != (Value&0x3f)) bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; g_main_cp_state.matrix_index_a.Hex = Value; } } void VertexShaderManager::SetTexMatrixChangedB(u32 Value) { if (g_main_cp_state.matrix_index_b.Hex != Value) { VertexManager::Flush(); bTexMatricesChanged[1] = true; g_main_cp_state.matrix_index_b.Hex = Value; } } void VertexShaderManager::SetViewportChanged() { bViewportChanged = true; } void VertexShaderManager::SetProjectionChanged() { bProjectionChanged = true; } void VertexShaderManager::SetMaterialColorChanged(int index, u32 color) { nMaterialsChanged[index] = true; } void VertexShaderManager::TranslateView(float x, float y, float z) { float result[3]; float vector[3] = { x,z,y }; Matrix33::Multiply(s_viewInvRotationMatrix, vector, result); for (int i = 0; i < 3; i++) s_fViewTranslationVector[i] += result[i]; bProjectionChanged = true; } void VertexShaderManager::RotateView(float x, float y) { s_fViewRotation[0] += x; s_fViewRotation[1] += y; Matrix33 mx; Matrix33 my; Matrix33::RotateX(mx, s_fViewRotation[1]); Matrix33::RotateY(my, s_fViewRotation[0]); Matrix33::Multiply(mx, my, s_viewRotationMatrix); // reverse rotation Matrix33::RotateX(mx, -s_fViewRotation[1]); Matrix33::RotateY(my, -s_fViewRotation[0]); Matrix33::Multiply(my, mx, s_viewInvRotationMatrix); bProjectionChanged = true; } void VertexShaderManager::ResetView() { memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector)); Matrix33::LoadIdentity(s_viewRotationMatrix); Matrix33::LoadIdentity(s_viewInvRotationMatrix); s_fViewRotation[0] = s_fViewRotation[1] = 0.0f; bProjectionChanged = true; } void VertexShaderManager::DoState(PointerWrap &p) { p.Do(g_fProjectionMatrix); p.Do(s_viewportCorrection); p.Do(s_viewRotationMatrix); p.Do(s_viewInvRotationMatrix); p.Do(s_fViewTranslationVector); p.Do(s_fViewRotation); p.Do(constants); p.Do(dirty); if (p.GetMode() == PointerWrap::MODE_READ) { Dirty(); } }