// Copyright 2013 Max Eliaser
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <X11/XKBlib.h>
#include <cmath>
#include <cstdlib>
#include <cstring>

#include "InputCommon/ControllerInterface/Xlib/XInput2.h"

// This is an input plugin using the XInput 2.0 extension to the X11 protocol,
// loosely based on the old XLib plugin. (Has nothing to do with the XInput
// API on Windows.)

// This plugin creates one KeyboardMouse object for each master pointer/
// keyboard pair. Each KeyboardMouse object exports four types of controls:
// *    Mouse button controls: hardcoded at five of them, but could be made to
//      support infinitely many mouse buttons in theory; XInput2 has no limit.
// *    Mouse cursor controls: one for each cardinal direction. Calculated by
//      comparing the absolute position of the mouse pointer on screen to the
//      center of the emulator window.
// *    Mouse axis controls: one for each cardinal direction. Calculated using
//      a running average of relative mouse motion on each axis.
// *    Key controls: these correspond to a limited subset of the keyboard
//      keys.

// Mouse axis control tuning. Unlike absolute mouse position, relative mouse
// motion data needs to be tweaked and smoothed out a bit to be usable.

// Mouse axis control output is simply divided by this number. In practice,
// that just means you can use a smaller "dead zone" if you bind axis controls
// to a joystick. No real need to make this customizable.
#define MOUSE_AXIS_SENSITIVITY 8.0f

// The mouse axis controls use a weighted running average. Each frame, the new
// value is the average of the old value and the amount of relative mouse
// motion during that frame. The old value is weighted by a ratio of
// MOUSE_AXIS_SMOOTHING:1 compared to the new value. Increasing
// MOUSE_AXIS_SMOOTHING makes the controls smoother, decreasing it makes them
// more responsive. This might be useful as a user-customizable option.
#define MOUSE_AXIS_SMOOTHING 1.5f

namespace ciface
{
namespace XInput2
{
// This function will add zero or more KeyboardMouse objects to devices.
void PopulateDevices(void* const hwnd)
{
  Display* dpy = XOpenDisplay(nullptr);

  // xi_opcode is important; it will be used to identify XInput events by
  // the polling loop in UpdateInput.
  int xi_opcode, event, error;

  // verify that the XInput extension is available
  if (!XQueryExtension(dpy, "XInputExtension", &xi_opcode, &event, &error))
    return;

  // verify that the XInput extension is at at least version 2.0
  int major = 2, minor = 0;

  if (XIQueryVersion(dpy, &major, &minor) != Success)
    return;

  // register all master devices with Dolphin

  XIDeviceInfo* all_masters;
  XIDeviceInfo* current_master;
  int num_masters;

  all_masters = XIQueryDevice(dpy, XIAllMasterDevices, &num_masters);

  for (int i = 0; i < num_masters; i++)
  {
    current_master = &all_masters[i];
    if (current_master->use == XIMasterPointer)
    {
      // Since current_master is a master pointer, its attachment must
      // be a master keyboard.
      g_controller_interface.AddDevice(std::make_shared<KeyboardMouse>(
          (Window)hwnd, xi_opcode, current_master->deviceid, current_master->attachment));
    }
  }

  XCloseDisplay(dpy);

  XIFreeDeviceInfo(all_masters);
}

// Apply the event mask to the device and all its slaves. Only used in the
// constructor. Remember, each KeyboardMouse has its own copy of the event
// stream, which is how multiple event masks can "coexist."
void KeyboardMouse::SelectEventsForDevice(Window window, XIEventMask* mask, int deviceid)
{
  // Set the event mask for the master device.
  mask->deviceid = deviceid;
  XISelectEvents(m_display, window, mask, 1);

  // Query all the master device's slaves and set the same event mask for
  // those too. There are two reasons we want to do this. For mouse devices,
  // we want the raw motion events, and only slaves (i.e. physical hardware
  // devices) emit those. For keyboard devices, selecting slaves avoids
  // dealing with key focus.

  XIDeviceInfo* all_slaves;
  XIDeviceInfo* current_slave;
  int num_slaves;

  all_slaves = XIQueryDevice(m_display, XIAllDevices, &num_slaves);

  for (int i = 0; i < num_slaves; i++)
  {
    current_slave = &all_slaves[i];
    if ((current_slave->use != XISlavePointer && current_slave->use != XISlaveKeyboard) ||
        current_slave->attachment != deviceid)
      continue;
    mask->deviceid = current_slave->deviceid;
    XISelectEvents(m_display, window, mask, 1);
  }

  XIFreeDeviceInfo(all_slaves);
}

KeyboardMouse::KeyboardMouse(Window window, int opcode, int pointer, int keyboard)
    : m_window(window), xi_opcode(opcode), pointer_deviceid(pointer), keyboard_deviceid(keyboard)
{
  memset(&m_state, 0, sizeof(m_state));

  // The cool thing about each KeyboardMouse object having its own Display
  // is that each one gets its own separate copy of the X11 event stream,
  // which it can individually filter to get just the events it's interested
  // in. So be aware that each KeyboardMouse object actually has its own X11
  // "context."
  m_display = XOpenDisplay(nullptr);

  int min_keycode, max_keycode;
  XDisplayKeycodes(m_display, &min_keycode, &max_keycode);

  int unused;  // should always be 1
  XIDeviceInfo* pointer_device = XIQueryDevice(m_display, pointer_deviceid, &unused);
  name = std::string(pointer_device->name);
  XIFreeDeviceInfo(pointer_device);

  XIEventMask mask;
  unsigned char mask_buf[(XI_LASTEVENT + 7) / 8];

  mask.mask_len = sizeof(mask_buf);
  mask.mask = mask_buf;
  memset(mask_buf, 0, sizeof(mask_buf));

  XISetMask(mask_buf, XI_ButtonPress);
  XISetMask(mask_buf, XI_ButtonRelease);
  XISetMask(mask_buf, XI_RawMotion);
  XISetMask(mask_buf, XI_KeyPress);
  XISetMask(mask_buf, XI_KeyRelease);

  SelectEventsForDevice(DefaultRootWindow(m_display), &mask, pointer_deviceid);
  SelectEventsForDevice(DefaultRootWindow(m_display), &mask, keyboard_deviceid);

  // Keyboard Keys
  for (int i = min_keycode; i <= max_keycode; ++i)
  {
    Key* temp_key = new Key(m_display, i, m_state.keyboard);
    if (temp_key->m_keyname.length())
      AddInput(temp_key);
    else
      delete temp_key;
  }

  // Mouse Buttons
  for (int i = 0; i < 5; i++)
    AddInput(new Button(i, &m_state.buttons));

  // Mouse Cursor, X-/+ and Y-/+
  for (int i = 0; i != 4; ++i)
    AddInput(new Cursor(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.cursor.y : &m_state.cursor.x));

  // Mouse Axis, X-/+ and Y-/+
  for (int i = 0; i != 4; ++i)
    AddInput(new Axis(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.axis.y : &m_state.axis.x));
}

KeyboardMouse::~KeyboardMouse()
{
  XCloseDisplay(m_display);
}

// Update the mouse cursor controls
void KeyboardMouse::UpdateCursor()
{
  double root_x, root_y, win_x, win_y;
  Window root, child;

  // unused-- we're not interested in button presses here, as those are
  // updated using events
  XIButtonState button_state;
  XIModifierState mods;
  XIGroupState group;

  XIQueryPointer(m_display, pointer_deviceid, m_window, &root, &child, &root_x, &root_y, &win_x,
                 &win_y, &button_state, &mods, &group);

  free(button_state.mask);

  XWindowAttributes win_attribs;
  XGetWindowAttributes(m_display, m_window, &win_attribs);

  // the mouse position as a range from -1 to 1
  m_state.cursor.x = win_x / (float)win_attribs.width * 2 - 1;
  m_state.cursor.y = win_y / (float)win_attribs.height * 2 - 1;
}

void KeyboardMouse::UpdateInput()
{
  XFlush(m_display);

  // for the axis controls
  float delta_x = 0.0f, delta_y = 0.0f;
  double delta_delta;
  bool mouse_moved = false;

  // Iterate through the event queue - update the axis controls, mouse
  // button controls, and keyboard controls.
  XEvent event;
  while (XPending(m_display))
  {
    XNextEvent(m_display, &event);

    if (event.xcookie.type != GenericEvent)
      continue;
    if (event.xcookie.extension != xi_opcode)
      continue;
    if (!XGetEventData(m_display, &event.xcookie))
      continue;

    // only one of these will get used
    XIDeviceEvent* dev_event = (XIDeviceEvent*)event.xcookie.data;
    XIRawEvent* raw_event = (XIRawEvent*)event.xcookie.data;

    switch (event.xcookie.evtype)
    {
    case XI_ButtonPress:
      m_state.buttons |= 1 << (dev_event->detail - 1);
      break;
    case XI_ButtonRelease:
      m_state.buttons &= ~(1 << (dev_event->detail - 1));
      break;
    case XI_KeyPress:
      m_state.keyboard[dev_event->detail / 8] |= 1 << (dev_event->detail % 8);
      break;
    case XI_KeyRelease:
      m_state.keyboard[dev_event->detail / 8] &= ~(1 << (dev_event->detail % 8));
      break;
    case XI_RawMotion:
      mouse_moved = true;

      // always safe because there is always at least one byte in
      // raw_event->valuators.mask, and if a bit is set in the mask,
      // then the value in raw_values is also available.
      if (XIMaskIsSet(raw_event->valuators.mask, 0))
      {
        delta_delta = raw_event->raw_values[0];
        // test for inf and nan
        if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
          delta_x += delta_delta;
      }
      if (XIMaskIsSet(raw_event->valuators.mask, 1))
      {
        delta_delta = raw_event->raw_values[1];
        // test for inf and nan
        if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
          delta_y += delta_delta;
      }
      break;
    }

    XFreeEventData(m_display, &event.xcookie);
  }

  // apply axis smoothing
  m_state.axis.x *= MOUSE_AXIS_SMOOTHING;
  m_state.axis.x += delta_x;
  m_state.axis.x /= MOUSE_AXIS_SMOOTHING + 1.0f;
  m_state.axis.y *= MOUSE_AXIS_SMOOTHING;
  m_state.axis.y += delta_y;
  m_state.axis.y /= MOUSE_AXIS_SMOOTHING + 1.0f;

  // Get the absolute position of the mouse pointer
  if (mouse_moved)
    UpdateCursor();
}

std::string KeyboardMouse::GetName() const
{
  // This is the name string we got from the X server for this master
  // pointer/keyboard pair.
  return name;
}

std::string KeyboardMouse::GetSource() const
{
  return "XInput2";
}

KeyboardMouse::Key::Key(Display* const display, KeyCode keycode, const char* keyboard)
    : m_display(display), m_keyboard(keyboard), m_keycode(keycode)
{
  int i = 0;
  KeySym keysym = 0;
  do
  {
    keysym = XkbKeycodeToKeysym(m_display, keycode, i, 0);
    i++;
  } while (keysym == NoSymbol && i < 8);

  // Convert to upper case for the keyname
  if (keysym >= 97 && keysym <= 122)
    keysym -= 32;

  // 0x0110ffff is the top of the unicode character range according
  // to keysymdef.h although it is probably more than we need.
  if (keysym == NoSymbol || keysym > 0x0110ffff || XKeysymToString(keysym) == nullptr)
    m_keyname = std::string();
  else
    m_keyname = std::string(XKeysymToString(keysym));
}

ControlState KeyboardMouse::Key::GetState() const
{
  return (m_keyboard[m_keycode / 8] & (1 << (m_keycode % 8))) != 0;
}

KeyboardMouse::Button::Button(unsigned int index, unsigned int* buttons)
    : m_buttons(buttons), m_index(index)
{
  // this will be a problem if we remove the hardcoded five-button limit
  name = std::string("Click ") + (char)('1' + m_index);
}

ControlState KeyboardMouse::Button::GetState() const
{
  return ((*m_buttons & (1 << m_index)) != 0);
}

KeyboardMouse::Cursor::Cursor(u8 index, bool positive, const float* cursor)
    : m_cursor(cursor), m_index(index), m_positive(positive)
{
  name = std::string("Cursor ") + (char)('X' + m_index) + (m_positive ? '+' : '-');
}

ControlState KeyboardMouse::Cursor::GetState() const
{
  return std::max(0.0f, *m_cursor / (m_positive ? 1.0f : -1.0f));
}

KeyboardMouse::Axis::Axis(u8 index, bool positive, const float* axis)
    : m_axis(axis), m_index(index), m_positive(positive)
{
  name = std::string("Axis ") + (char)('X' + m_index) + (m_positive ? '+' : '-');
}

ControlState KeyboardMouse::Axis::GetState() const
{
  return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY));
}
}
}