// Copyright (C) 2003-2008 Dolphin Project.

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License 2.0 for more details.

// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/

// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/

#include "Setup.h"
#include "Thread.h"
// -----------------------------------------
#ifdef SETUP_TIMER_WAITING
// -----------------
	#include <windows.h>
	#include "ConsoleWindow.h"
	EventCallBack FunctionPointer[10];
#endif
// ------------------------

#define THREAD_DEBUG 1

namespace Common
{
#ifdef _WIN32

void InitThreading()
{
	// Nothing to do in Win32 build.
}

CriticalSection::CriticalSection(int spincount)
{
	if (spincount)
	{
		InitializeCriticalSectionAndSpinCount(&section, spincount);
	}
	else
	{
		InitializeCriticalSection(&section);
	}
}

CriticalSection::~CriticalSection()
{
	DeleteCriticalSection(&section);
}

void CriticalSection::Enter()
{
	EnterCriticalSection(&section);
}

bool CriticalSection::TryEnter()
{
	return TryEnterCriticalSection(&section) ? true : false;
}

void CriticalSection::Leave()
{
	LeaveCriticalSection(&section);
}


Thread::Thread(ThreadFunc function, void* arg)
	: m_hThread(NULL), m_threadId(0)
{
	m_hThread = CreateThread(
			0, // Security attributes
			0, // Stack size
			function,
			arg,
			0,
			&m_threadId);
}

Thread::~Thread()
{
	WaitForDeath();
}

void Thread::WaitForDeath(const int _Wait)
{
	if (m_hThread)
	{
		WaitForSingleObject(m_hThread, _Wait);
		CloseHandle(m_hThread);
		m_hThread = NULL;
	}
}

void Thread::SetAffinity(int mask)
{
	SetThreadAffinityMask(m_hThread, mask);
}

void Thread::SetCurrentThreadAffinity(int mask)
{
	SetThreadAffinityMask(GetCurrentThread(), mask);
}


//////////////////////////////////////////////////////////////////////////////////////////
// Regular same thread loop based waiting
// ������������������
Event::Event()
{
	m_hEvent = 0;
	#ifdef SETUP_TIMER_WAITING
		DoneWaiting = false;
		StartWait = false;
		hTimer = NULL;
		hTimerQueue = NULL;
	#endif
}

void Event::Init()
{
	m_hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
}

void Event::Shutdown()
{
	CloseHandle(m_hEvent);
	m_hEvent = 0;
}

void Event::Set()
{
	SetEvent(m_hEvent);
}

void Event::Wait()
{
	WaitForSingleObject(m_hEvent, INFINITE);
}

inline HRESULT MsgWaitForSingleObject(HANDLE handle, DWORD timeout)
{
	return MsgWaitForMultipleObjects(1, &handle, FALSE, timeout, 0);
}

void Event::MsgWait()
{
	// Adapted from MSDN example http://msdn.microsoft.com/en-us/library/ms687060.aspx
	while (true)
	{
		DWORD result; 
		MSG msg; 
		// Read all of the messages in this next loop, 
		// removing each message as we read it.
		while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 
		{ 
			// If it is a quit message, exit.
			if (msg.message == WM_QUIT)  
				return; 
			// Otherwise, dispatch the message.
			DispatchMessage(&msg); 
		}

		// Wait for any message sent or posted to this queue 
		// or for one of the passed handles be set to signaled.
		result = MsgWaitForSingleObject(m_hEvent, THREAD_WAIT_TIMEOUT); 

		// The result tells us the type of event we have.
		if (result == (WAIT_OBJECT_0 + 1))
		{
			// New messages have arrived. 
			// Continue to the top of the always while loop to 
			// dispatch them and resume waiting.
			continue;
		} 
		else
		{
			// result == WAIT_OBJECT_0
			// Our event got signaled
			return;
		}
	}
}

/////////////////////////////////////


//////////////////////////////////////////////////////////////////////////////////////////
/* Separate thread timer based waiting, instead of same thread loop waiting. The downside with this
   is that it's less convenient to use because we can't stall any threads with a loop. The positive
   is that we don't cause these incredibly annoying WaitForEternity() hangings. */
// ������������������
#ifdef SETUP_TIMER_WAITING
/* I could not figure out how to place this in the class to, CreateTimerQueueTimer() would complain
   about some kind of type casting, anyone have any ideas about how to do it? */
VOID CALLBACK TimerRoutine(PVOID lpParam, BOOLEAN TimerOrWaitFired)
{
    if (lpParam == NULL)
    {
        Console::Print("TimerRoutine lpParam is NULL\n");
    }
    else
    {
        // lpParam points to the argument; in this case it is an int

        //Console::Print("Timer[%i] will call back\n", *(int*)lpParam);
    }

	// Call back
	int Id = *(int*)lpParam;
	if (FunctionPointer[Id]) FunctionPointer[Id]();
}

// Create a timer that will call back to the calling function
bool Event::TimerWait(EventCallBack WaitCB, int _Id, bool OptCondition)
{
	Id = _Id;

	//Console::Print("TimerWait[%i]: %i %i %i\n", Id, StartWait, DoneWaiting, OptCondition);

	FunctionPointer[Id] = WaitCB;
	
	// This means we are done waiting, so we wont call back again, and we also reset the variables for this Event
	if (DoneWaiting && OptCondition)
	{
		StartWait = false;
		DoneWaiting = false;
		FunctionPointer[Id] = NULL;

		// Delete all timers in the timer queue.
		if (!DeleteTimerQueue(hTimerQueue))
			Console::Print("DeleteTimerQueue failed (%d)\n", GetLastError());

		hTimer = NULL;
		hTimerQueue = NULL;

		return true;
	}

	// Else start a new callback timer
	StartWait = true;

	// Create the timer queue if needed
	if (!hTimerQueue)
	{
		hTimerQueue = CreateTimerQueue();
		if (NULL == hTimerQueue)
		{
			Console::Print("CreateTimerQueue failed (%d)\n", GetLastError());
			return false;
		}
	}

    // Set a timer to call the timer routine in 10 seconds.
    if (!CreateTimerQueueTimer( &hTimer, hTimerQueue, 
            (WAITORTIMERCALLBACK)TimerRoutine, &Id , 10, 0, 0))
    {
        Console::Print("CreateTimerQueueTimer failed (%d)\n", GetLastError());
        return false;
    }

	return false;
}
// Check if we are done or not
bool Event::DoneWait()
{
	if (StartWait && DoneWaiting)
		return true;
	else
		return false;
}
// Tells the timer that we are done waiting
void Event::SetTimer()
{
	// We can not be done before we have started waiting
	if (StartWait) DoneWaiting = true;
}
#endif
////////////////////////////////////////



//////////////////////////////////////////////////////////////////////////////////////////
// Supporting functions
// ������������������

void SleepCurrentThread(int ms)
{
	Sleep(ms);
}

typedef struct tagTHREADNAME_INFO
{
	DWORD dwType; // must be 0x1000
	LPCSTR szName; // pointer to name (in user addr space)
	DWORD dwThreadID; // thread ID (-1=caller thread)
	DWORD dwFlags; // reserved for future use, must be zero
} THREADNAME_INFO;
// Usage: SetThreadName (-1, "MainThread");
//
// Sets the debugger-visible name of the current thread.
// Uses undocumented (actually, it is now documented) trick.
// http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsdebug/html/vxtsksettingthreadname.asp

void SetCurrentThreadName(const TCHAR* szThreadName)
{
	THREADNAME_INFO info;
	info.dwType = 0x1000;
#ifdef UNICODE
	//TODO: Find the proper way to do this.
	char tname[256];
	unsigned int i;

	for (i = 0; i < _tcslen(szThreadName); i++)
	{
		tname[i] = (char)szThreadName[i]; //poor man's unicode->ansi, TODO: fix
	}

	tname[i] = 0;
	info.szName = tname;
#else
	info.szName = szThreadName;
#endif

	info.dwThreadID = -1; //dwThreadID;
	info.dwFlags = 0;
	__try
	{
		RaiseException(0x406D1388, 0, sizeof(info) / sizeof(DWORD), (ULONG_PTR*)&info);
	}
	__except(EXCEPTION_CONTINUE_EXECUTION)
	{}
}
// TODO: check if ever inline
LONG SyncInterlockedIncrement(LONG *Dest)
{
    return InterlockedIncrement(Dest);
}

LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val)
{
	return InterlockedExchangeAdd(Dest, Val);
}

LONG SyncInterlockedExchange(LONG *Dest, LONG Val)
{
	return InterlockedExchange(Dest, Val);
}
////////////////////////////////////////


#else // !WIN32, so must be POSIX threads

pthread_key_t threadname_key;

CriticalSection::CriticalSection(int spincount_unused)
{
	pthread_mutex_init(&mutex, NULL);
}


CriticalSection::~CriticalSection()
{
	pthread_mutex_destroy(&mutex);
}


void CriticalSection::Enter()
{
	int ret = pthread_mutex_lock(&mutex);
	if (ret) fprintf(stderr, "%s: pthread_mutex_lock(%p) failed: %s\n", 
					__FUNCTION__, &mutex, strerror(ret));
}


bool CriticalSection::TryEnter()
{
	return(!pthread_mutex_trylock(&mutex));
}


void CriticalSection::Leave()
{
	int ret = pthread_mutex_unlock(&mutex);
	if (ret) fprintf(stderr, "%s: pthread_mutex_unlock(%p) failed: %s\n", 
					__FUNCTION__, &mutex, strerror(ret));
}


Thread::Thread(ThreadFunc function, void* arg)
	: thread_id(0)
{
	pthread_attr_t attr;
	pthread_attr_init(&attr);
	pthread_attr_setstacksize(&attr, 1024 * 1024);
	int ret = pthread_create(&thread_id, &attr, function, arg);
	if (ret) fprintf(stderr, "%s: pthread_create(%p, %p, %p, %p) failed: %s\n", 
		__FUNCTION__, &thread_id, &attr, function, arg, strerror(ret));
	
#ifdef THREAD_DEBUG
	fprintf(stderr, "created new thread %lu (func=%p, arg=%p)\n", thread_id, function, arg);
#endif	
}


Thread::~Thread()
{
	WaitForDeath();
}


void Thread::WaitForDeath()
{
	if (thread_id)
	{
		void* exit_status;
		int ret = pthread_join(thread_id, &exit_status);
		if (ret) fprintf(stderr, "error joining thread %lu: %s\n", thread_id, strerror(ret));
        if (exit_status)
                  fprintf(stderr, "thread %lu exited with status %d\n", thread_id, *(int *)exit_status);
		thread_id = 0;
	}
}


void Thread::SetAffinity(int mask)
{
	// This is non-standard
#ifdef __linux__
	cpu_set_t cpu_set;
	CPU_ZERO(&cpu_set);

	for (unsigned int i = 0; i < sizeof(mask) * 8; i++)
	{
		if ((mask >> i) & 1){CPU_SET(i, &cpu_set);}
	}

	pthread_setaffinity_np(thread_id, sizeof(cpu_set), &cpu_set);
#endif
}


void Thread::SetCurrentThreadAffinity(int mask)
{
#ifdef __linux__
	cpu_set_t cpu_set;
	CPU_ZERO(&cpu_set);

	for (size_t i = 0; i < sizeof(mask) * 8; i++)
	{
		if ((mask >> i) & 1){CPU_SET(i, &cpu_set);}
	}

	pthread_setaffinity_np(pthread_self(), sizeof(cpu_set), &cpu_set);
#endif
}

void InitThreading() {
	static int thread_init_done = 0;
	if (thread_init_done)
		return;
	
	if (pthread_key_create(&threadname_key, NULL/*free*/) != 0)
		perror("Unable to create thread name key: ");

	thread_init_done++;
}

void SleepCurrentThread(int ms)
{
	usleep(1000 * ms);
}


void SetCurrentThreadName(const TCHAR* szThreadName)
{
	pthread_setspecific(threadname_key, strdup(szThreadName));
#ifdef THREAD_DEBUG
	fprintf(stderr, "%s(%s)\n", __FUNCTION__, szThreadName);
#endif
}


Event::Event()
{
	is_set_ = false;
}


void Event::Init()
{
	pthread_cond_init(&event_, 0);
	pthread_mutex_init(&mutex_, 0);
}


void Event::Shutdown()
{
	pthread_mutex_destroy(&mutex_);
	pthread_cond_destroy(&event_);
}


void Event::Set()
{
	pthread_mutex_lock(&mutex_);

	if (!is_set_)
	{
		is_set_ = true;
		pthread_cond_signal(&event_);
	}

	pthread_mutex_unlock(&mutex_);
}


void Event::Wait()
{
	pthread_mutex_lock(&mutex_);

	while (!is_set_)
	{
		pthread_cond_wait(&event_, &mutex_);
	}

	is_set_ = false;
	pthread_mutex_unlock(&mutex_);
}

LONG SyncInterlockedIncrement(LONG *Dest)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
  return  __sync_add_and_fetch(Dest, 1);
#else
  register int result;
  __asm__ __volatile__("lock; xadd %0,%1"
                       : "=r" (result), "=m" (*Dest)
                       : "0" (1), "m" (*Dest)
                       : "memory");
  return result;
#endif
}

LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
  return  __sync_add_and_fetch(Dest, Val);
#else
  register int result;
  __asm__ __volatile__("lock; xadd %0,%1"
                       : "=r" (result), "=m" (*Dest)
                       : "0" (Val), "m" (*Dest)
                       : "memory");
  return result;
#endif
}

LONG SyncInterlockedExchange(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
  return  __sync_lock_test_and_set(Dest, Val);
#else
  register int result;
  __asm__ __volatile__("lock; xchg %0,%1"
                       : "=r" (result), "=m" (*Dest)
                       : "0" (Val), "m" (*Dest)
                       : "memory");
  return result;
#endif
}

#endif

} // end of namespace Common