// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include "VideoCommon/BPMemory.h" #include "VideoCommon/GeometryShaderGen.h" #include "VideoCommon/LightingShaderGen.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderGen.h" #include "VideoCommon/VideoConfig.h" static char text[16384]; static const char* primitives_ogl[] = { "points", "lines", "triangles" }; static const char* primitives_d3d[] = { "point", "line", "triangle" }; template static inline void GenerateGeometryShader(T& out, u32 primitive_type, API_TYPE ApiType) { // Non-uid template parameters will write to the dummy data (=> gets optimized out) geometry_shader_uid_data dummy_data; geometry_shader_uid_data* uid_data = out.template GetUidData(); if (uid_data == nullptr) uid_data = &dummy_data; out.SetBuffer(text); const bool is_writing_shadercode = (out.GetBuffer() != nullptr); if (is_writing_shadercode) text[sizeof(text) - 1] = 0x7C; // canary uid_data->primitive_type = primitive_type; const unsigned int vertex_in = primitive_type + 1; const unsigned int vertex_out = primitive_type == PRIMITIVE_TRIANGLES ? 3 : 4; uid_data->stereo = g_ActiveConfig.iStereoMode > 0; if (ApiType == API_OPENGL) { // Insert layout parameters if (g_ActiveConfig.backend_info.bSupportsGSInstancing) { out.Write("layout(%s, invocations = %d) in;\n", primitives_ogl[primitive_type], g_ActiveConfig.iStereoMode > 0 ? 2 : 1); out.Write("layout(triangle_strip, max_vertices = %d) out;\n", vertex_out); } else { out.Write("layout(%s) in;\n", primitives_ogl[primitive_type]); out.Write("layout(triangle_strip, max_vertices = %d) out;\n", g_ActiveConfig.iStereoMode > 0 ? vertex_out * 2 : vertex_out); } } out.Write("%s", s_lighting_struct); // uniforms if (ApiType == API_OPENGL) out.Write("layout(std140%s) uniform GSBlock {\n", g_ActiveConfig.backend_info.bSupportsBindingLayout ? ", binding = 3" : ""); else out.Write("cbuffer GSBlock {\n"); out.Write( "\tfloat4 " I_STEREOPARAMS";\n" "\tfloat4 " I_LINEPTWIDTH";\n" "\tfloat4 " I_VIEWPORT";\n" "\tuint " I_TEXOFFSETFLAGS"[8];\n" "};\n"); uid_data->numTexGens = bpmem.genMode.numtexgens; uid_data->pixel_lighting = g_ActiveConfig.bEnablePixelLighting; GenerateVSOutputStruct(out, ApiType); if (ApiType == API_OPENGL) { if (g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("#define InstanceID gl_InvocationID\n"); out.Write("centroid in VS_OUTPUT o[%d];\n", vertex_in); out.Write("centroid out VS_OUTPUT vs;\n"); if (g_ActiveConfig.iStereoMode > 0) out.Write("flat out int layer;\n"); out.Write("void main()\n{\n"); } else // D3D { out.Write("struct GS_OUTPUT {\n"); out.Write("\tVS_OUTPUT vs;\n"); if (g_ActiveConfig.iStereoMode > 0) out.Write("\tuint layer : SV_RenderTargetArrayIndex;\n"); out.Write("};\n"); if (g_ActiveConfig.backend_info.bSupportsGSInstancing) { out.Write("[maxvertexcount(%d)]\n[instance(%d)]\n", vertex_out, g_ActiveConfig.iStereoMode > 0 ? 2 : 1); out.Write("void main(%s VS_OUTPUT o[%d], inout TriangleStream output, in uint InstanceID : SV_GSInstanceID)\n{\n", primitives_d3d[primitive_type], vertex_in); } else { out.Write("[maxvertexcount(%d)]\n", g_ActiveConfig.iStereoMode > 0 ? vertex_out * 2 : vertex_out); out.Write("void main(%s VS_OUTPUT o[%d], inout TriangleStream output)\n{\n", primitives_d3d[primitive_type], vertex_in); } out.Write("\tGS_OUTPUT gs;\n"); } out.Write("\tVS_OUTPUT f;\n"); if (primitive_type == PRIMITIVE_LINES) { // GameCube/Wii's line drawing algorithm is a little quirky. It does not // use the correct line caps. Instead, the line caps are vertical or // horizontal depending the slope of the line. out.Write("\tfloat2 offset;\n"); out.Write("\tfloat2 to = abs(o[1].pos.xy - o[0].pos.xy);\n"); // FIXME: What does real hardware do when line is at a 45-degree angle? // FIXME: Lines aren't drawn at the correct width. See Twilight Princess map. out.Write("\tif (" I_VIEWPORT".y * to.y > " I_VIEWPORT".x * to.x) {\n"); // Line is more tall. Extend geometry left and right. // Lerp LineWidth/2 from [0..VpWidth] to [-1..1] out.Write("\t\toffset = float2(" I_LINEPTWIDTH"[0] / " I_VIEWPORT".x, 0);\n"); out.Write("\t} else {\n"); // Line is more wide. Extend geometry up and down. // Lerp LineWidth/2 from [0..VpHeight] to [1..-1] out.Write("\t\toffset = float2(0, -" I_LINEPTWIDTH"[0] / " I_VIEWPORT".y);\n"); out.Write("\t}\n"); } if (g_ActiveConfig.iStereoMode > 0) { // If the GPU supports invocation we don't need a for loop and can simply use the // invocation identifier to determine which layer we're rendering. if (g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("\tint eye = InstanceID;\n"); else out.Write("\tfor (int eye = 0; eye < 2; ++eye) {\n"); } out.Write("\tfor (int i = 0; i < %d; ++i) {\n", vertex_in); out.Write("\tVS_OUTPUT f = o[i];\n"); if (g_ActiveConfig.iStereoMode > 0) { // Select the output layer if (ApiType == API_OPENGL) { out.Write("\tgl_Layer = eye;\n"); out.Write("\tlayer = eye;\n"); } else out.Write("\tgs.layer = eye;\n"); // For stereoscopy add a small horizontal offset in Normalized Device Coordinates proportional // to the depth of the vertex. We retrieve the depth value from the w-component of the projected // vertex which contains the negated z-component of the original vertex. // For negative parallax (out-of-screen effects) we subtract a convergence value from // the depth value. This results in objects at a distance smaller than the convergence // distance to seemingly appear in front of the screen. // This formula is based on page 13 of the "Nvidia 3D Vision Automatic, Best Practices Guide" out.Write("\tf.clipPos.x += " I_STEREOPARAMS"[eye] * (o[i].clipPos.w - " I_STEREOPARAMS"[2]);\n"); out.Write("\tf.pos.x += " I_STEREOPARAMS"[eye] * (o[i].pos.w - " I_STEREOPARAMS"[2]);\n"); } if (primitive_type == PRIMITIVE_LINES) { out.Write("\tVS_OUTPUT l = f;\n"); out.Write("\tVS_OUTPUT r = f;\n"); out.Write("\tl.pos.xy -= offset * l.pos.w;\n"); out.Write("\tr.pos.xy += offset * r.pos.w;\n"); for (unsigned int i = 0; i < bpmem.genMode.numtexgens; ++i) { out.Write("\tr.tex%d.x += " I_LINEPTWIDTH"[2] * (" I_TEXOFFSETFLAGS"[%d] % 2);\n", i, i); } EmitVertex(out, "l", ApiType); EmitVertex(out, "r", ApiType); } else { EmitVertex(out, "f", ApiType); } out.Write("\t}\n"); if (ApiType == API_OPENGL) out.Write("\tEndPrimitive();\n"); else out.Write("\toutput.RestartStrip();\n"); if (g_ActiveConfig.iStereoMode > 0 && !g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("\t}\n"); out.Write("}\n"); if (is_writing_shadercode) { if (text[sizeof(text) - 1] != 0x7C) PanicAlert("GeometryShader generator - buffer too small, canary has been eaten!"); } } template static inline void EmitVertex(T& out, const char *vertex, API_TYPE ApiType) { if (ApiType == API_OPENGL) out.Write("\tgl_Position = %s.pos;\n", vertex); out.Write("\t%s = %s;\n", (ApiType == API_OPENGL) ? "vs" : "gs.vs", vertex); if (ApiType == API_OPENGL) out.Write("\tEmitVertex();\n"); else out.Write("\toutput.Append(gs);\n"); } void GetGeometryShaderUid(GeometryShaderUid& object, u32 primitive_type, API_TYPE ApiType) { GenerateGeometryShader(object, primitive_type, ApiType); } void GenerateGeometryShaderCode(ShaderCode& object, u32 primitive_type, API_TYPE ApiType) { GenerateGeometryShader(object, primitive_type, ApiType); }