// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "Core/CoreTiming.h" #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/ChunkFile.h" #include "Common/Logging/Log.h" #include "Common/SPSCQueue.h" #include "Common/StringUtil.h" #include "Common/Thread.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/PowerPC/PowerPC.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/VideoBackendBase.h" namespace CoreTiming { struct EventType { TimedCallback callback; const std::string* name; }; struct Event { s64 time; u64 fifo_order; u64 userdata; EventType* type; }; // Sort by time, unless the times are the same, in which case sort by the order added to the queue static bool operator>(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order); } static bool operator<(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order); } // unordered_map stores each element separately as a linked list node so pointers to elements // remain stable regardless of rehashes/resizing. static std::unordered_map s_event_types; // STATE_TO_SAVE // The queue is a min-heap using std::make_heap/push_heap/pop_heap. // We don't use std::priority_queue because we need to be able to serialize, unserialize and // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated // by the standard adaptor class. static std::vector s_event_queue; static u64 s_event_fifo_id; static std::mutex s_ts_write_lock; static Common::SPSCQueue s_ts_queue; static float s_last_OC_factor; static constexpr int MAX_SLICE_LENGTH = 20000; static s64 s_idled_cycles; static u32 s_fake_dec_start_value; static u64 s_fake_dec_start_ticks; // Are we in a function that has been called from Advance() static bool s_is_global_timer_sane; Globals g; static EventType* s_ev_lost = nullptr; static void EmptyTimedCallback(u64 userdata, s64 cyclesLate) { } // Changing the CPU speed in Dolphin isn't actually done by changing the physical clock rate, // but by changing the amount of work done in a particular amount of time. This tends to be more // compatible because it stops the games from actually knowing directly that the clock rate has // changed, and ensures that anything based on waiting a specific number of cycles still works. // // Technically it might be more accurate to call this changing the IPC instead of the CPU speed, // but the effect is largely the same. static int DowncountToCycles(int downcount) { return static_cast(downcount * g.last_OC_factor_inverted); } static int CyclesToDowncount(int cycles) { return static_cast(cycles * s_last_OC_factor); } EventType* RegisterEvent(const std::string& name, TimedCallback callback) { // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. ASSERT_MSG(POWERPC, s_event_types.find(name) == s_event_types.end(), "CoreTiming Event \"%s\" is already registered. Events should only be registered " "during Init to avoid breaking save states.", name.c_str()); auto info = s_event_types.emplace(name, EventType{callback, nullptr}); EventType* event_type = &info.first->second; event_type->name = &info.first->first; return event_type; } void UnregisterAllEvents() { ASSERT_MSG(POWERPC, s_event_queue.empty(), "Cannot unregister events with events pending"); s_event_types.clear(); } void Init() { s_last_OC_factor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f; g.last_OC_factor_inverted = 1.0f / s_last_OC_factor; PowerPC::ppcState.downcount = CyclesToDowncount(MAX_SLICE_LENGTH); g.slice_length = MAX_SLICE_LENGTH; g.global_timer = 0; s_idled_cycles = 0; // The time between CoreTiming being intialized and the first call to Advance() is considered // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before // executing the first PPC cycle of each slice to prepare the slice length and downcount for // that slice. s_is_global_timer_sane = true; s_event_fifo_id = 0; s_ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback); } void Shutdown() { std::lock_guard lk(s_ts_write_lock); MoveEvents(); ClearPendingEvents(); UnregisterAllEvents(); } void DoState(PointerWrap& p) { std::lock_guard lk(s_ts_write_lock); p.Do(g.slice_length); p.Do(g.global_timer); p.Do(s_idled_cycles); p.Do(s_fake_dec_start_value); p.Do(s_fake_dec_start_ticks); p.Do(g.fake_TB_start_value); p.Do(g.fake_TB_start_ticks); p.Do(s_last_OC_factor); g.last_OC_factor_inverted = 1.0f / s_last_OC_factor; p.Do(s_event_fifo_id); p.DoMarker("CoreTimingData"); MoveEvents(); p.DoEachElement(s_event_queue, [](PointerWrap& pw, Event& ev) { pw.Do(ev.time); pw.Do(ev.fifo_order); // this is why we can't have (nice things) pointers as userdata pw.Do(ev.userdata); // we can't savestate ev.type directly because events might not get registered in the same // order (or at all) every time. // so, we savestate the event's type's name, and derive ev.type from that when loading. std::string name; if (pw.GetMode() != PointerWrap::MODE_READ) name = *ev.type->name; pw.Do(name); if (pw.GetMode() == PointerWrap::MODE_READ) { auto itr = s_event_types.find(name); if (itr != s_event_types.end()) { ev.type = &itr->second; } else { WARN_LOG(POWERPC, "Lost event from savestate because its type, \"%s\", has not been registered.", name.c_str()); ev.type = s_ev_lost; } } }); p.DoMarker("CoreTimingEvents"); // When loading from a save state, we must assume the Event order is random and meaningless. // The exact layout of the heap in memory is implementation defined, therefore it is platform // and library version specific. if (p.GetMode() == PointerWrap::MODE_READ) std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater()); } // This should only be called from the CPU thread. If you are calling // it from any other thread, you are doing something evil u64 GetTicks() { u64 ticks = static_cast(g.global_timer); if (!s_is_global_timer_sane) { int downcount = DowncountToCycles(PowerPC::ppcState.downcount); ticks += g.slice_length - downcount; } return ticks; } u64 GetIdleTicks() { return static_cast(s_idled_cycles); } void ClearPendingEvents() { s_event_queue.clear(); } void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata, FromThread from) { ASSERT_MSG(POWERPC, event_type, "Event type is nullptr, will crash now."); bool from_cpu_thread; if (from == FromThread::ANY) { from_cpu_thread = Core::IsCPUThread(); } else { from_cpu_thread = from == FromThread::CPU; ASSERT_MSG(POWERPC, from_cpu_thread == Core::IsCPUThread(), "A \"%s\" event was scheduled from the wrong thread (%s)", event_type->name->c_str(), from_cpu_thread ? "CPU" : "non-CPU"); } if (from_cpu_thread) { s64 timeout = GetTicks() + cycles_into_future; // If this event needs to be scheduled before the next advance(), force one early if (!s_is_global_timer_sane) ForceExceptionCheck(cycles_into_future); s_event_queue.emplace_back(Event{timeout, s_event_fifo_id++, userdata, event_type}); std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater()); } else { if (Core::WantsDeterminism()) { ERROR_LOG(POWERPC, "Someone scheduled an off-thread \"%s\" event while netplay or " "movie play/record was active. This is likely to cause a desync.", event_type->name->c_str()); } std::lock_guard lk(s_ts_write_lock); s_ts_queue.Push(Event{g.global_timer + cycles_into_future, 0, userdata, event_type}); } } void RemoveEvent(EventType* event_type) { auto itr = std::remove_if(s_event_queue.begin(), s_event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != s_event_queue.end()) { s_event_queue.erase(itr, s_event_queue.end()); std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater()); } } void RemoveAllEvents(EventType* event_type) { MoveEvents(); RemoveEvent(event_type); } void ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); if (DowncountToCycles(PowerPC::ppcState.downcount) > cycles) { // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here. // Account for cycles already executed by adjusting the g.slice_length g.slice_length -= DowncountToCycles(PowerPC::ppcState.downcount) - static_cast(cycles); PowerPC::ppcState.downcount = CyclesToDowncount(static_cast(cycles)); } } void MoveEvents() { for (Event ev; s_ts_queue.Pop(ev);) { ev.fifo_order = s_event_fifo_id++; s_event_queue.emplace_back(std::move(ev)); std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater()); } } void Advance() { MoveEvents(); int cyclesExecuted = g.slice_length - DowncountToCycles(PowerPC::ppcState.downcount); g.global_timer += cyclesExecuted; s_last_OC_factor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f; g.last_OC_factor_inverted = 1.0f / s_last_OC_factor; g.slice_length = MAX_SLICE_LENGTH; s_is_global_timer_sane = true; while (!s_event_queue.empty() && s_event_queue.front().time <= g.global_timer) { Event evt = std::move(s_event_queue.front()); std::pop_heap(s_event_queue.begin(), s_event_queue.end(), std::greater()); s_event_queue.pop_back(); // NOTICE_LOG(POWERPC, "[Scheduler] %-20s (%lld, %lld)", evt.type->name->c_str(), // g.global_timer, evt.time); evt.type->callback(evt.userdata, g.global_timer - evt.time); } s_is_global_timer_sane = false; // Still events left (scheduled in the future) if (!s_event_queue.empty()) { g.slice_length = static_cast( std::min(s_event_queue.front().time - g.global_timer, MAX_SLICE_LENGTH)); } PowerPC::ppcState.downcount = CyclesToDowncount(g.slice_length); // Check for any external exceptions. // It's important to do this after processing events otherwise any exceptions will be delayed // until the next slice: // Pokemon Box refuses to boot if the first exception from the audio DMA is received late PowerPC::CheckExternalExceptions(); } void LogPendingEvents() { auto clone = s_event_queue; std::sort(clone.begin(), clone.end()); for (const Event& ev : clone) { INFO_LOG(POWERPC, "PENDING: Now: %" PRId64 " Pending: %" PRId64 " Type: %s", g.global_timer, ev.time, ev.type->name->c_str()); } } // Should only be called from the CPU thread after the PPC clock has changed void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock) { for (Event& ev : s_event_queue) { const s64 ticks = (ev.time - g.global_timer) * new_ppc_clock / old_ppc_clock; ev.time = g.global_timer + ticks; } } void Idle() { if (SConfig::GetInstance().bSyncGPUOnSkipIdleHack) { // When the FIFO is processing data we must not advance because in this way // the VI will be desynchronized. So, We are waiting until the FIFO finish and // while we process only the events required by the FIFO. Fifo::FlushGpu(); } s_idled_cycles += DowncountToCycles(PowerPC::ppcState.downcount); PowerPC::ppcState.downcount = 0; } std::string GetScheduledEventsSummary() { std::string text = "Scheduled events\n"; text.reserve(1000); auto clone = s_event_queue; std::sort(clone.begin(), clone.end()); for (const Event& ev : clone) { text += StringFromFormat("%s : %" PRIi64 " %016" PRIx64 "\n", ev.type->name->c_str(), ev.time, ev.userdata); } return text; } u32 GetFakeDecStartValue() { return s_fake_dec_start_value; } void SetFakeDecStartValue(u32 val) { s_fake_dec_start_value = val; } u64 GetFakeDecStartTicks() { return s_fake_dec_start_ticks; } void SetFakeDecStartTicks(u64 val) { s_fake_dec_start_ticks = val; } u64 GetFakeTBStartValue() { return g.fake_TB_start_value; } void SetFakeTBStartValue(u64 val) { g.fake_TB_start_value = val; } u64 GetFakeTBStartTicks() { return g.fake_TB_start_ticks; } void SetFakeTBStartTicks(u64 val) { g.fake_TB_start_ticks = val; } } // namespace CoreTiming