// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/D3D/Render.h" #include #include #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MathUtil.h" #include "Core/Core.h" #include "VideoBackends/D3D/BoundingBox.h" #include "VideoBackends/D3D/D3DBase.h" #include "VideoBackends/D3D/D3DState.h" #include "VideoBackends/D3D/D3DUtil.h" #include "VideoBackends/D3D/DXPipeline.h" #include "VideoBackends/D3D/DXShader.h" #include "VideoBackends/D3D/DXTexture.h" #include "VideoBackends/D3D/FramebufferManager.h" #include "VideoBackends/D3D/GeometryShaderCache.h" #include "VideoBackends/D3D/PixelShaderCache.h" #include "VideoBackends/D3D/TextureCache.h" #include "VideoBackends/D3D/VertexShaderCache.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace DX11 { // Reserve 512KB for vertices, and 64KB for uniforms. // This should be sufficient for our usages, and if more is required, // we split it into multiple draws. constexpr u32 UTILITY_VBO_SIZE = 512 * 1024; constexpr u32 UTILITY_UBO_SIZE = 64 * 1024; // Nvidia stereo blitting struct defined in "nvstereo.h" from the Nvidia SDK typedef struct _Nv_Stereo_Image_Header { unsigned int dwSignature; unsigned int dwWidth; unsigned int dwHeight; unsigned int dwBPP; unsigned int dwFlags; } NVSTEREOIMAGEHEADER, *LPNVSTEREOIMAGEHEADER; #define NVSTEREO_IMAGE_SIGNATURE 0x4433564e Renderer::Renderer(int backbuffer_width, int backbuffer_height) : ::Renderer(backbuffer_width, backbuffer_height, AbstractTextureFormat::RGBA8) { m_last_multisamples = g_ActiveConfig.iMultisamples; m_last_stereo_mode = g_ActiveConfig.stereo_mode != StereoMode::Off; m_last_fullscreen_state = D3D::GetFullscreenState(); g_framebuffer_manager = std::make_unique(m_target_width, m_target_height); SetupDeviceObjects(); // Clear EFB textures constexpr std::array clear_color{{0.f, 0.f, 0.f, 1.f}}; D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), clear_color.data()); D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 0.f, 0); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)m_target_width, (float)m_target_height); D3D::context->RSSetViewports(1, &vp); FramebufferManager::BindEFBRenderTarget(); m_current_framebuffer_width = m_target_width; m_current_framebuffer_height = m_target_height; } Renderer::~Renderer() { TeardownDeviceObjects(); } void Renderer::SetupDeviceObjects() { HRESULT hr; D3D11_DEPTH_STENCIL_DESC ddesc; ddesc.DepthEnable = FALSE; ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; ddesc.DepthFunc = D3D11_COMPARISON_ALWAYS; ddesc.StencilEnable = FALSE; ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK; ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK; hr = D3D::device->CreateDepthStencilState(&ddesc, &m_clear_depth_states[0]); CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen"); ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; ddesc.DepthEnable = TRUE; hr = D3D::device->CreateDepthStencilState(&ddesc, &m_clear_depth_states[1]); CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen"); ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; hr = D3D::device->CreateDepthStencilState(&ddesc, &m_clear_depth_states[2]); CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen"); D3D::SetDebugObjectName(m_clear_depth_states[0], "depth state for Renderer::ClearScreen (depth buffer disabled)"); D3D::SetDebugObjectName( m_clear_depth_states[1], "depth state for Renderer::ClearScreen (depth buffer enabled, writing enabled)"); D3D::SetDebugObjectName( m_clear_depth_states[2], "depth state for Renderer::ClearScreen (depth buffer enabled, writing disabled)"); D3D11_BLEND_DESC blenddesc; blenddesc.AlphaToCoverageEnable = FALSE; blenddesc.IndependentBlendEnable = FALSE; blenddesc.RenderTarget[0].BlendEnable = FALSE; blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL; blenddesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; blenddesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; blenddesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD; blenddesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; blenddesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; blenddesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD; hr = D3D::device->CreateBlendState(&blenddesc, &m_reset_blend_state); CHECK(hr == S_OK, "Create blend state for Renderer::ResetAPIState"); D3D::SetDebugObjectName(m_reset_blend_state, "blend state for Renderer::ResetAPIState"); m_clear_blend_states[0] = m_reset_blend_state; m_reset_blend_state->AddRef(); blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE; hr = D3D::device->CreateBlendState(&blenddesc, &m_clear_blend_states[1]); CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen"); blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALPHA; hr = D3D::device->CreateBlendState(&blenddesc, &m_clear_blend_states[2]); CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen"); blenddesc.RenderTarget[0].RenderTargetWriteMask = 0; hr = D3D::device->CreateBlendState(&blenddesc, &m_clear_blend_states[3]); CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen"); ddesc.DepthEnable = FALSE; ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; ddesc.DepthFunc = D3D11_COMPARISON_LESS; ddesc.StencilEnable = FALSE; ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK; ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK; hr = D3D::device->CreateDepthStencilState(&ddesc, &m_reset_depth_state); CHECK(hr == S_OK, "Create depth state for Renderer::ResetAPIState"); D3D::SetDebugObjectName(m_reset_depth_state, "depth stencil state for Renderer::ResetAPIState"); D3D11_RASTERIZER_DESC rastdesc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0.f, false, false, false, false); hr = D3D::device->CreateRasterizerState(&rastdesc, &m_reset_rast_state); CHECK(hr == S_OK, "Create rasterizer state for Renderer::ResetAPIState"); D3D::SetDebugObjectName(m_reset_rast_state, "rasterizer state for Renderer::ResetAPIState"); m_screenshot_texture = nullptr; CD3D11_BUFFER_DESC vbo_desc(UTILITY_VBO_SIZE, D3D11_BIND_VERTEX_BUFFER, D3D11_USAGE_DYNAMIC, D3D11_CPU_ACCESS_WRITE); hr = D3D::device->CreateBuffer(&vbo_desc, nullptr, &m_utility_vertex_buffer); CHECK(SUCCEEDED(hr), "Create utility VBO"); CD3D11_BUFFER_DESC ubo_desc(UTILITY_UBO_SIZE, D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DYNAMIC, D3D11_CPU_ACCESS_WRITE); hr = D3D::device->CreateBuffer(&ubo_desc, nullptr, &m_utility_uniform_buffer); CHECK(SUCCEEDED(hr), "Create utility UBO"); } // Kill off all device objects void Renderer::TeardownDeviceObjects() { g_framebuffer_manager.reset(); SAFE_RELEASE(m_clear_blend_states[0]); SAFE_RELEASE(m_clear_blend_states[1]); SAFE_RELEASE(m_clear_blend_states[2]); SAFE_RELEASE(m_clear_blend_states[3]); SAFE_RELEASE(m_clear_depth_states[0]); SAFE_RELEASE(m_clear_depth_states[1]); SAFE_RELEASE(m_clear_depth_states[2]); SAFE_RELEASE(m_reset_blend_state); SAFE_RELEASE(m_reset_depth_state); SAFE_RELEASE(m_reset_rast_state); SAFE_RELEASE(m_screenshot_texture); SAFE_RELEASE(m_3d_vision_texture); SAFE_RELEASE(m_utility_vertex_buffer); SAFE_RELEASE(m_utility_uniform_buffer); } void Renderer::Create3DVisionTexture(int width, int height) { // Create a staging texture for 3D vision with signature information in the last row. // Nvidia 3D Vision supports full SBS, so there is no loss in resolution during this process. NVSTEREOIMAGEHEADER header; header.dwSignature = NVSTEREO_IMAGE_SIGNATURE; header.dwWidth = static_cast(width * 2); header.dwHeight = static_cast(height + 1); header.dwBPP = 32; header.dwFlags = 0; const u32 pitch = static_cast(4 * width * 2); const auto memory = std::make_unique((height + 1) * pitch); u8* image_header_location = &memory[height * pitch]; std::memcpy(image_header_location, &header, sizeof(header)); D3D11_SUBRESOURCE_DATA sys_data; sys_data.SysMemPitch = pitch; sys_data.pSysMem = memory.get(); m_3d_vision_texture = D3DTexture2D::Create(width * 2, height + 1, D3D11_BIND_RENDER_TARGET, D3D11_USAGE_DEFAULT, DXGI_FORMAT_R8G8B8A8_UNORM, 1, 1, &sys_data); } bool Renderer::IsHeadless() const { return D3D::swapchain == nullptr; } std::unique_ptr Renderer::CreateTexture(const TextureConfig& config) { return std::make_unique(config); } std::unique_ptr Renderer::CreateStagingTexture(StagingTextureType type, const TextureConfig& config) { return DXStagingTexture::Create(type, config); } std::unique_ptr Renderer::CreateFramebuffer(const AbstractTexture* color_attachment, const AbstractTexture* depth_attachment) { return DXFramebuffer::Create(static_cast(color_attachment), static_cast(depth_attachment)); } void Renderer::RenderText(const std::string& text, int left, int top, u32 color) { D3D::DrawTextScaled(static_cast(left + 1), static_cast(top + 1), 20.f, 0.0f, color & 0xFF000000, text); D3D::DrawTextScaled(static_cast(left), static_cast(top), 20.f, 0.0f, color, text); } std::unique_ptr Renderer::CreateShaderFromSource(ShaderStage stage, const char* source, size_t length) { return DXShader::CreateFromSource(stage, source, length); } std::unique_ptr Renderer::CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) { return DXShader::CreateFromBinary(stage, data, length); } std::unique_ptr Renderer::CreatePipeline(const AbstractPipelineConfig& config) { return DXPipeline::Create(config); } void Renderer::UpdateUtilityUniformBuffer(const void* uniforms, u32 uniforms_size) { DEBUG_ASSERT(uniforms_size > 0 && uniforms_size < UTILITY_UBO_SIZE); D3D11_MAPPED_SUBRESOURCE mapped; HRESULT hr = D3D::context->Map(m_utility_uniform_buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped); CHECK(SUCCEEDED(hr), "Map utility UBO"); std::memcpy(mapped.pData, uniforms, uniforms_size); D3D::context->Unmap(m_utility_uniform_buffer, 0); } void Renderer::UpdateUtilityVertexBuffer(const void* vertices, u32 vertex_stride, u32 num_vertices) { D3D11_MAPPED_SUBRESOURCE mapped; HRESULT hr = D3D::context->Map(m_utility_vertex_buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped); CHECK(SUCCEEDED(hr), "Map utility VBO"); std::memcpy(mapped.pData, vertices, num_vertices * vertex_stride); D3D::context->Unmap(m_utility_vertex_buffer, 0); } void Renderer::SetPipeline(const AbstractPipeline* pipeline) { const DXPipeline* dx_pipeline = static_cast(pipeline); if (!dx_pipeline) return; D3D::stateman->SetRasterizerState(dx_pipeline->GetRasterizerState()); D3D::stateman->SetDepthState(dx_pipeline->GetDepthState()); D3D::stateman->SetBlendState(dx_pipeline->GetBlendState()); D3D::stateman->SetPrimitiveTopology(dx_pipeline->GetPrimitiveTopology()); D3D::stateman->SetInputLayout(dx_pipeline->GetInputLayout()); D3D::stateman->SetVertexShader(dx_pipeline->GetVertexShader()); D3D::stateman->SetGeometryShader(dx_pipeline->GetGeometryShader()); D3D::stateman->SetPixelShader(dx_pipeline->GetPixelShader()); } void Renderer::DrawUtilityPipeline(const void* uniforms, u32 uniforms_size, const void* vertices, u32 vertex_stride, u32 num_vertices) { // Copy in uniforms. if (uniforms_size > 0) { UpdateUtilityUniformBuffer(uniforms, uniforms_size); D3D::stateman->SetVertexConstants(m_utility_uniform_buffer); D3D::stateman->SetPixelConstants(m_utility_uniform_buffer); D3D::stateman->SetGeometryConstants(m_utility_uniform_buffer); } // If the vertices are larger than our buffer, we need to break it up into multiple draws. const char* vertices_ptr = static_cast(vertices); while (num_vertices > 0) { u32 vertices_this_draw = num_vertices; if (vertices_ptr) { vertices_this_draw = std::min(vertices_this_draw, UTILITY_VBO_SIZE / vertex_stride); DEBUG_ASSERT(vertices_this_draw > 0); UpdateUtilityVertexBuffer(vertices_ptr, vertex_stride, vertices_this_draw); D3D::stateman->SetVertexBuffer(m_utility_vertex_buffer, vertex_stride, 0); } // Apply pending state and draw. D3D::stateman->Apply(); D3D::context->Draw(vertices_this_draw, 0); vertices_ptr += vertex_stride * vertices_this_draw; num_vertices -= vertices_this_draw; } } void Renderer::DispatchComputeShader(const AbstractShader* shader, const void* uniforms, u32 uniforms_size, u32 groups_x, u32 groups_y, u32 groups_z) { D3D::stateman->SetComputeShader(static_cast(shader)->GetD3DComputeShader()); if (uniforms_size > 0) { UpdateUtilityUniformBuffer(uniforms, uniforms_size); D3D::stateman->SetComputeConstants(m_utility_uniform_buffer); } D3D::stateman->Apply(); D3D::context->Dispatch(groups_x, groups_y, groups_z); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } void Renderer::SetScissorRect(const MathUtil::Rectangle& rc) { const RECT rect = {rc.left, rc.top, rc.right, rc.bottom}; D3D::context->RSSetScissorRects(1, &rect); } // This function allows the CPU to directly access the EFB. // There are EFB peeks (which will read the color or depth of a pixel) // and EFB pokes (which will change the color or depth of a pixel). // // The behavior of EFB peeks can only be modified by: // - GX_PokeAlphaRead // The behavior of EFB pokes can be modified by: // - GX_PokeAlphaMode (TODO) // - GX_PokeAlphaUpdate (TODO) // - GX_PokeBlendMode (TODO) // - GX_PokeColorUpdate (TODO) // - GX_PokeDither (TODO) // - GX_PokeDstAlpha (TODO) // - GX_PokeZMode (TODO) u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { // Convert EFB dimensions to the ones of our render target EFBRectangle efbPixelRc; efbPixelRc.left = x; efbPixelRc.top = y; efbPixelRc.right = x + 1; efbPixelRc.bottom = y + 1; TargetRectangle targetPixelRc = Renderer::ConvertEFBRectangle(efbPixelRc); // Take the mean of the resulting dimensions; TODO: Don't use the center pixel, compute the // average color instead D3D11_RECT RectToLock; if (type == EFBAccessType::PeekColor || type == EFBAccessType::PeekZ) { RectToLock.left = (targetPixelRc.left + targetPixelRc.right) / 2; RectToLock.top = (targetPixelRc.top + targetPixelRc.bottom) / 2; RectToLock.right = RectToLock.left + 1; RectToLock.bottom = RectToLock.top + 1; } else { RectToLock.left = targetPixelRc.left; RectToLock.right = targetPixelRc.right; RectToLock.top = targetPixelRc.top; RectToLock.bottom = targetPixelRc.bottom; } // Reset any game specific settings. ResetAPIState(); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, 1.f, 1.f); D3D::context->RSSetViewports(1, &vp); D3D::SetPointCopySampler(); // Select copy and read textures depending on if we are doing a color or depth read (since they // are different formats). D3DTexture2D* source_tex; D3DTexture2D* read_tex; ID3D11Texture2D* staging_tex; if (type == EFBAccessType::PeekColor) { source_tex = FramebufferManager::GetEFBColorTexture(); read_tex = FramebufferManager::GetEFBColorReadTexture(); staging_tex = FramebufferManager::GetEFBColorStagingBuffer(); } else { source_tex = FramebufferManager::GetEFBDepthTexture(); read_tex = FramebufferManager::GetEFBDepthReadTexture(); staging_tex = FramebufferManager::GetEFBDepthStagingBuffer(); } // Select pixel shader (we don't want to average depth samples, instead select the minimum). ID3D11PixelShader* copy_pixel_shader; if (type == EFBAccessType::PeekZ && g_ActiveConfig.iMultisamples > 1) copy_pixel_shader = PixelShaderCache::GetDepthResolveProgram(); else copy_pixel_shader = PixelShaderCache::GetColorCopyProgram(true); // Draw a quad to grab the texel we want to read. D3D::context->OMSetRenderTargets(1, &read_tex->GetRTV(), nullptr); D3D::drawShadedTexQuad(source_tex->GetSRV(), &RectToLock, Renderer::GetTargetWidth(), Renderer::GetTargetHeight(), copy_pixel_shader, VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout()); // Restore expected game state. RestoreAPIState(); // Copy the pixel from the renderable to cpu-readable buffer. D3D11_BOX box = CD3D11_BOX(0, 0, 0, 1, 1, 1); D3D::context->CopySubresourceRegion(staging_tex, 0, 0, 0, 0, read_tex->GetTex(), 0, &box); D3D11_MAPPED_SUBRESOURCE map; CHECK(D3D::context->Map(staging_tex, 0, D3D11_MAP_READ, 0, &map) == S_OK, "Map staging buffer failed"); // Convert the framebuffer data to the format the game is expecting to receive. u32 ret; if (type == EFBAccessType::PeekColor) { u32 val; memcpy(&val, map.pData, sizeof(val)); // our buffers are RGBA, yet a BGRA value is expected val = ((val & 0xFF00FF00) | ((val >> 16) & 0xFF) | ((val << 16) & 0xFF0000)); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { val = RGBA8ToRGBA6ToRGBA8(val); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { val = RGBA8ToRGB565ToRGBA8(val); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { val |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) ret = val; // GX_READ_NONE else if (alpha_read_mode.ReadMode == 1) ret = (val | 0xFF000000); // GX_READ_FF else /*if(alpha_read_mode.ReadMode == 0)*/ ret = (val & 0x00FFFFFF); // GX_READ_00 } else // type == EFBAccessType::PeekZ { float val; memcpy(&val, map.pData, sizeof(val)); // depth buffer is inverted in the d3d backend val = 1.0f - val; if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = MathUtil::Clamp(static_cast(val * 65536.0f), 0, 0xFFFF); } else { ret = MathUtil::Clamp(static_cast(val * 16777216.0f), 0, 0xFFFFFF); } } D3D::context->Unmap(staging_tex, 0); return ret; } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { ResetAPIState(); if (type == EFBAccessType::PokeColor) { D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetTargetWidth(), (float)GetTargetHeight()); D3D::context->RSSetViewports(1, &vp); } else // if (type == EFBAccessType::PokeZ) { D3D::stateman->SetBlendState(m_clear_blend_states[3]); D3D::stateman->SetDepthState(m_clear_depth_states[1]); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetTargetWidth(), (float)GetTargetHeight()); D3D::context->RSSetViewports(1, &vp); } D3D::DrawEFBPokeQuads(type, points, num_points); RestoreAPIState(); } void Renderer::SetViewport(float x, float y, float width, float height, float near_depth, float far_depth) { // In D3D, the viewport rectangle must fit within the render target. D3D11_VIEWPORT vp; vp.TopLeftX = MathUtil::Clamp(x, 0.0f, static_cast(m_current_framebuffer_width - 1)); vp.TopLeftY = MathUtil::Clamp(y, 0.0f, static_cast(m_current_framebuffer_height - 1)); vp.Width = MathUtil::Clamp(width, 1.0f, static_cast(m_current_framebuffer_width) - vp.TopLeftX); vp.Height = MathUtil::Clamp(height, 1.0f, static_cast(m_current_framebuffer_height) - vp.TopLeftY); vp.MinDepth = near_depth; vp.MaxDepth = far_depth; D3D::context->RSSetViewports(1, &vp); } void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) { ResetAPIState(); if (colorEnable && alphaEnable) D3D::stateman->SetBlendState(m_clear_blend_states[0]); else if (colorEnable) D3D::stateman->SetBlendState(m_clear_blend_states[1]); else if (alphaEnable) D3D::stateman->SetBlendState(m_clear_blend_states[2]); else D3D::stateman->SetBlendState(m_clear_blend_states[3]); // TODO: Should we enable Z testing here? // if (!bpmem.zmode.testenable) D3D::stateman->PushDepthState(s_clear_depth_states[0]); // else if (zEnable) D3D::stateman->SetDepthState(m_clear_depth_states[1]); else /*if (!zEnable)*/ D3D::stateman->SetDepthState(m_clear_depth_states[2]); // Update the view port for clearing the picture TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc); D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top, (float)targetRc.GetWidth(), (float)targetRc.GetHeight(), 0.f, 1.f); D3D::context->RSSetViewports(1, &vp); FramebufferManager::SetIntegerEFBRenderTarget(false); // Color is passed in bgra mode so we need to convert it to rgba u32 rgbaColor = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000); D3D::drawClearQuad(rgbaColor, 1.0f - (z & 0xFFFFFF) / 16777216.0f); RestoreAPIState(); } void Renderer::ReinterpretPixelData(unsigned int convtype) { // TODO: MSAA support.. D3D11_RECT source = CD3D11_RECT(0, 0, GetTargetWidth(), GetTargetHeight()); ID3D11PixelShader* pixel_shader; if (convtype == 0) pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(true); else if (convtype == 2) pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(true); else { ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype); return; } // convert data and set the target texture as our new EFB ResetAPIState(); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, static_cast(GetTargetWidth()), static_cast(GetTargetHeight())); D3D::context->RSSetViewports(1, &vp); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV(), nullptr); D3D::SetPointCopySampler(); D3D::drawShadedTexQuad( FramebufferManager::GetEFBColorTexture()->GetSRV(), &source, GetTargetWidth(), GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), GeometryShaderCache::GetCopyGeometryShader()); FramebufferManager::SwapReinterpretTexture(); RestoreAPIState(); } // This function has the final picture. We adjust the aspect ratio here. void Renderer::SwapImpl(AbstractTexture* texture, const EFBRectangle& xfb_region, u64 ticks) { ResetAPIState(); // Prepare to copy the XFBs to our backbuffer CheckForSurfaceChange(); CheckForSurfaceResize(); UpdateDrawRectangle(); TargetRectangle targetRc = GetTargetRectangle(); static constexpr std::array clear_color{{0.f, 0.f, 0.f, 1.f}}; D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr); D3D::context->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV(), clear_color.data()); m_current_framebuffer = nullptr; m_current_framebuffer_width = m_backbuffer_width; m_current_framebuffer_height = m_backbuffer_height; // activate linear filtering for the buffer copies D3D::SetLinearCopySampler(); auto* xfb_texture = static_cast(texture); BlitScreen(xfb_region, targetRc, xfb_texture->GetRawTexIdentifier(), xfb_texture->GetConfig().width, xfb_texture->GetConfig().height); // Reset viewport for drawing text D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.0f, 0.0f, static_cast(m_backbuffer_width), static_cast(m_backbuffer_height)); D3D::context->RSSetViewports(1, &vp); Renderer::DrawDebugText(); OSD::DrawMessages(); g_texture_cache->Cleanup(frameCount); // Enable configuration changes UpdateActiveConfig(); g_texture_cache->OnConfigChanged(g_ActiveConfig); // Flip/present backbuffer to frontbuffer here if (D3D::swapchain) D3D::Present(); // Resize the back buffers NOW to avoid flickering if (CalculateTargetSize() || m_last_multisamples != g_ActiveConfig.iMultisamples || m_last_stereo_mode != (g_ActiveConfig.stereo_mode != StereoMode::Off)) { m_last_multisamples = g_ActiveConfig.iMultisamples; m_last_stereo_mode = g_ActiveConfig.stereo_mode != StereoMode::Off; PixelShaderCache::InvalidateMSAAShaders(); UpdateDrawRectangle(); g_framebuffer_manager.reset(); g_framebuffer_manager = std::make_unique(m_target_width, m_target_height); D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), clear_color.data()); D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 0.f, 0); } CheckForHostConfigChanges(); // begin next frame RestoreAPIState(); } void Renderer::CheckForSurfaceChange() { if (!m_surface_changed.TestAndClear()) return; SAFE_RELEASE(m_screenshot_texture); SAFE_RELEASE(m_3d_vision_texture); D3D::Reset(reinterpret_cast(m_new_surface_handle)); m_new_surface_handle = nullptr; UpdateBackbufferSize(); } void Renderer::CheckForSurfaceResize() { const bool fullscreen_state = D3D::GetFullscreenState(); const bool exclusive_fullscreen_changed = fullscreen_state != m_last_fullscreen_state; if (!m_surface_resized.TestAndClear() && !exclusive_fullscreen_changed) return; SAFE_RELEASE(m_screenshot_texture); SAFE_RELEASE(m_3d_vision_texture); m_last_fullscreen_state = fullscreen_state; if (D3D::swapchain) D3D::ResizeSwapChain(); UpdateBackbufferSize(); } void Renderer::UpdateBackbufferSize() { if (D3D::swapchain) { DXGI_SWAP_CHAIN_DESC1 desc = {}; D3D::swapchain->GetDesc1(&desc); m_backbuffer_width = std::max(desc.Width, 1u); m_backbuffer_height = std::max(desc.Height, 1u); } else { m_backbuffer_width = 1; m_backbuffer_height = 1; } } // ALWAYS call RestoreAPIState for each ResetAPIState call you're doing void Renderer::ResetAPIState() { D3D::stateman->SetBlendState(m_reset_blend_state); D3D::stateman->SetDepthState(m_reset_depth_state); D3D::stateman->SetRasterizerState(m_reset_rast_state); } void Renderer::RestoreAPIState() { // Gets us back into a more game-like state. m_current_framebuffer = nullptr; m_current_framebuffer_width = m_target_width; m_current_framebuffer_height = m_target_height; FramebufferManager::BindEFBRenderTarget(); BPFunctions::SetViewport(); BPFunctions::SetScissor(); } void Renderer::SetFramebuffer(const AbstractFramebuffer* framebuffer) { const DXFramebuffer* fb = static_cast(framebuffer); D3D::context->OMSetRenderTargets(fb->GetNumRTVs(), fb->GetRTVArray(), fb->GetDSV()); m_current_framebuffer = fb; m_current_framebuffer_width = fb->GetWidth(); m_current_framebuffer_height = fb->GetHeight(); } void Renderer::SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer) { SetFramebuffer(framebuffer); } void Renderer::SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer, const ClearColor& color_value, float depth_value) { SetFramebuffer(framebuffer); if (framebuffer->GetColorFormat() != AbstractTextureFormat::Undefined) { D3D::context->ClearRenderTargetView( static_cast(framebuffer)->GetRTVArray()[0], color_value.data()); } if (framebuffer->GetDepthFormat() != AbstractTextureFormat::Undefined) { D3D::context->ClearDepthStencilView(static_cast(framebuffer)->GetDSV(), D3D11_CLEAR_DEPTH, depth_value, 0); } } void Renderer::SetTexture(u32 index, const AbstractTexture* texture) { D3D::stateman->SetTexture( index, texture ? static_cast(texture)->GetRawTexIdentifier()->GetSRV() : nullptr); } void Renderer::SetSamplerState(u32 index, const SamplerState& state) { D3D::stateman->SetSampler(index, m_state_cache.Get(state)); } void Renderer::UnbindTexture(const AbstractTexture* texture) { D3D::stateman->UnsetTexture( static_cast(texture)->GetRawTexIdentifier()->GetSRV()); } void Renderer::SetInterlacingMode() { // TODO } u16 Renderer::BBoxRead(int index) { // Here we get the min/max value of the truncated position of the upscaled framebuffer. // So we have to correct them to the unscaled EFB sizes. int value = BBox::Get(index); if (index < 2) { // left/right value = value * EFB_WIDTH / m_target_width; } else { // up/down value = value * EFB_HEIGHT / m_target_height; } if (index & 1) value++; // fix max values to describe the outer border return value; } void Renderer::BBoxWrite(int index, u16 _value) { int value = _value; // u16 isn't enough to multiply by the efb width if (index & 1) value--; if (index < 2) { value = value * m_target_width / EFB_WIDTH; } else { value = value * m_target_height / EFB_HEIGHT; } BBox::Set(index, value); } void Renderer::BlitScreen(TargetRectangle src, TargetRectangle dst, D3DTexture2D* src_texture, u32 src_width, u32 src_height) { if (g_ActiveConfig.stereo_mode == StereoMode::SBS || g_ActiveConfig.stereo_mode == StereoMode::TAB) { TargetRectangle leftRc, rightRc; std::tie(leftRc, rightRc) = ConvertStereoRectangle(dst); D3D11_VIEWPORT leftVp = CD3D11_VIEWPORT((float)leftRc.left, (float)leftRc.top, (float)leftRc.GetWidth(), (float)leftRc.GetHeight()); D3D11_VIEWPORT rightVp = CD3D11_VIEWPORT((float)rightRc.left, (float)rightRc.top, (float)rightRc.GetWidth(), (float)rightRc.GetHeight()); D3D::context->RSSetViewports(1, &leftVp); D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, PixelShaderCache::GetColorCopyProgram(false), VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), nullptr, 0); D3D::context->RSSetViewports(1, &rightVp); D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, PixelShaderCache::GetColorCopyProgram(false), VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), nullptr, 1); } else if (g_ActiveConfig.stereo_mode == StereoMode::Nvidia3DVision) { if (!m_3d_vision_texture) Create3DVisionTexture(m_backbuffer_width, m_backbuffer_height); D3D11_VIEWPORT leftVp = CD3D11_VIEWPORT((float)dst.left, (float)dst.top, (float)dst.GetWidth(), (float)dst.GetHeight()); D3D11_VIEWPORT rightVp = CD3D11_VIEWPORT((float)(dst.left + m_backbuffer_width), (float)dst.top, (float)dst.GetWidth(), (float)dst.GetHeight()); // Render to staging texture which is double the width of the backbuffer D3D::context->OMSetRenderTargets(1, &m_3d_vision_texture->GetRTV(), nullptr); D3D::context->RSSetViewports(1, &leftVp); D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, PixelShaderCache::GetColorCopyProgram(false), VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), nullptr, 0); D3D::context->RSSetViewports(1, &rightVp); D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, PixelShaderCache::GetColorCopyProgram(false), VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), nullptr, 1); // Copy the left eye to the backbuffer, if Nvidia 3D Vision is enabled it should // recognize the signature and automatically include the right eye frame. D3D11_BOX box = CD3D11_BOX(0, 0, 0, m_backbuffer_width, m_backbuffer_height, 1); D3D::context->CopySubresourceRegion(D3D::GetBackBuffer()->GetTex(), 0, 0, 0, 0, m_3d_vision_texture->GetTex(), 0, &box); // Restore render target to backbuffer D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr); } else { D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)dst.left, (float)dst.top, (float)dst.GetWidth(), (float)dst.GetHeight()); D3D::context->RSSetViewports(1, &vp); ID3D11PixelShader* pixelShader = (g_Config.stereo_mode == StereoMode::Anaglyph) ? PixelShaderCache::GetAnaglyphProgram() : PixelShaderCache::GetColorCopyProgram(false); ID3D11GeometryShader* geomShader = (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer) ? GeometryShaderCache::GetCopyGeometryShader() : nullptr; D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, pixelShader, VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), geomShader); } } void Renderer::SetFullscreen(bool enable_fullscreen) { D3D::SetFullscreenState(enable_fullscreen); } bool Renderer::IsFullscreen() const { return D3D::GetFullscreenState(); } } // namespace DX11