// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Core/CoreTiming.h" #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/ChunkFile.h" #include "Common/Logging/Log.h" #include "Common/SPSCQueue.h" #include "Core/AchievementManager.h" #include "Core/CPUThreadConfigCallback.h" #include "Core/Config/AchievementSettings.h" #include "Core/Config/MainSettings.h" #include "Core/Core.h" #include "Core/PowerPC/PowerPC.h" #include "Core/System.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PerformanceMetrics.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoConfig.h" namespace CoreTiming { // Sort by time, unless the times are the same, in which case sort by the order added to the queue static bool operator>(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order); } static bool operator<(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order); } static constexpr int MAX_SLICE_LENGTH = 20000; static void EmptyTimedCallback(Core::System& system, u64 userdata, s64 cyclesLate) { } CoreTimingManager::CoreTimingManager(Core::System& system) : m_system(system) { } // Changing the CPU speed in Dolphin isn't actually done by changing the physical clock rate, // but by changing the amount of work done in a particular amount of time. This tends to be more // compatible because it stops the games from actually knowing directly that the clock rate has // changed, and ensures that anything based on waiting a specific number of cycles still works. // // Technically it might be more accurate to call this changing the IPC instead of the CPU speed, // but the effect is largely the same. int CoreTimingManager::DowncountToCycles(int downcount) const { return static_cast(downcount * m_globals.last_OC_factor_inverted); } int CoreTimingManager::CyclesToDowncount(int cycles) const { return static_cast(cycles * m_last_oc_factor); } EventType* CoreTimingManager::RegisterEvent(const std::string& name, TimedCallback callback) { // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. ASSERT_MSG(POWERPC, m_event_types.find(name) == m_event_types.end(), "CoreTiming Event \"{}\" is already registered. Events should only be registered " "during Init to avoid breaking save states.", name); auto info = m_event_types.emplace(name, EventType{callback, nullptr}); EventType* event_type = &info.first->second; event_type->name = &info.first->first; return event_type; } void CoreTimingManager::UnregisterAllEvents() { ASSERT_MSG(POWERPC, m_event_queue.empty(), "Cannot unregister events with events pending"); m_event_types.clear(); } void CoreTimingManager::Init() { m_registered_config_callback_id = CPUThreadConfigCallback::AddConfigChangedCallback([this]() { RefreshConfig(); }); RefreshConfig(); m_last_oc_factor = m_config_oc_factor; m_globals.last_OC_factor_inverted = m_config_oc_inv_factor; m_system.GetPPCState().downcount = CyclesToDowncount(MAX_SLICE_LENGTH); m_globals.slice_length = MAX_SLICE_LENGTH; m_globals.global_timer = 0; m_idled_cycles = 0; // The time between CoreTiming being intialized and the first call to Advance() is considered // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before // executing the first PPC cycle of each slice to prepare the slice length and downcount for // that slice. m_is_global_timer_sane = true; // Reset data used by the throttling system ResetThrottle(0); m_event_fifo_id = 0; m_ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback); } void CoreTimingManager::Shutdown() { std::lock_guard lk(m_ts_write_lock); MoveEvents(); ClearPendingEvents(); UnregisterAllEvents(); CPUThreadConfigCallback::RemoveConfigChangedCallback(m_registered_config_callback_id); } void CoreTimingManager::RefreshConfig() { m_config_oc_factor = Config::Get(Config::MAIN_OVERCLOCK_ENABLE) ? Config::Get(Config::MAIN_OVERCLOCK) : 1.0f; m_config_oc_inv_factor = 1.0f / m_config_oc_factor; m_config_sync_on_skip_idle = Config::Get(Config::MAIN_SYNC_ON_SKIP_IDLE); // A maximum fallback is used to prevent the system from sleeping for // too long or going full speed in an attempt to catch up to timings. m_max_fallback = std::chrono::duration_cast
(DT_ms(Config::Get(Config::MAIN_MAX_FALLBACK))); m_max_variance = std::chrono::duration_cast
(DT_ms(Config::Get(Config::MAIN_TIMING_VARIANCE))); #ifdef USE_RETRO_ACHIEVEMENTS if (AchievementManager::GetInstance().IsHardcoreModeActive() && Config::Get(Config::MAIN_EMULATION_SPEED) < 1.0f && Config::Get(Config::MAIN_EMULATION_SPEED) > 0.0f) { Config::SetCurrent(Config::MAIN_EMULATION_SPEED, 1.0f); m_emulation_speed = 1.0f; OSD::AddMessage("Minimum speed is 100% in Hardcore Mode"); } #endif // USE_RETRO_ACHIEVEMENTS m_emulation_speed = Config::Get(Config::MAIN_EMULATION_SPEED); } void CoreTimingManager::DoState(PointerWrap& p) { std::lock_guard lk(m_ts_write_lock); p.Do(m_globals.slice_length); p.Do(m_globals.global_timer); p.Do(m_idled_cycles); p.Do(m_fake_dec_start_value); p.Do(m_fake_dec_start_ticks); p.Do(m_globals.fake_TB_start_value); p.Do(m_globals.fake_TB_start_ticks); p.Do(m_last_oc_factor); m_globals.last_OC_factor_inverted = 1.0f / m_last_oc_factor; p.Do(m_event_fifo_id); p.DoMarker("CoreTimingData"); MoveEvents(); p.DoEachElement(m_event_queue, [this](PointerWrap& pw, Event& ev) { pw.Do(ev.time); pw.Do(ev.fifo_order); // this is why we can't have (nice things) pointers as userdata pw.Do(ev.userdata); // we can't savestate ev.type directly because events might not get registered in the same // order (or at all) every time. // so, we savestate the event's type's name, and derive ev.type from that when loading. std::string name; if (!pw.IsReadMode()) name = *ev.type->name; pw.Do(name); if (pw.IsReadMode()) { auto itr = m_event_types.find(name); if (itr != m_event_types.end()) { ev.type = &itr->second; } else { WARN_LOG_FMT(POWERPC, "Lost event from savestate because its type, \"{}\", has not been registered.", name); ev.type = m_ev_lost; } } }); p.DoMarker("CoreTimingEvents"); if (p.IsReadMode()) { // When loading from a save state, we must assume the Event order is random and meaningless. // The exact layout of the heap in memory is implementation defined, therefore it is platform // and library version specific. std::make_heap(m_event_queue.begin(), m_event_queue.end(), std::greater()); // The stave state has changed the time, so our previous Throttle targets are invalid. // Especially when global_time goes down; So we create a fake throttle update. ResetThrottle(m_globals.global_timer); } } // This should only be called from the CPU thread. If you are calling // it from any other thread, you are doing something evil u64 CoreTimingManager::GetTicks() const { u64 ticks = static_cast(m_globals.global_timer); if (!m_is_global_timer_sane) { int downcount = DowncountToCycles(m_system.GetPPCState().downcount); ticks += m_globals.slice_length - downcount; } return ticks; } u64 CoreTimingManager::GetIdleTicks() const { return static_cast(m_idled_cycles); } void CoreTimingManager::ClearPendingEvents() { m_event_queue.clear(); } void CoreTimingManager::ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata, FromThread from) { ASSERT_MSG(POWERPC, event_type, "Event type is nullptr, will crash now."); bool from_cpu_thread; if (from == FromThread::ANY) { from_cpu_thread = Core::IsCPUThread(); } else { from_cpu_thread = from == FromThread::CPU; ASSERT_MSG(POWERPC, from_cpu_thread == Core::IsCPUThread(), "A \"{}\" event was scheduled from the wrong thread ({})", *event_type->name, from_cpu_thread ? "CPU" : "non-CPU"); } if (from_cpu_thread) { s64 timeout = GetTicks() + cycles_into_future; // If this event needs to be scheduled before the next advance(), force one early if (!m_is_global_timer_sane) ForceExceptionCheck(cycles_into_future); m_event_queue.emplace_back(Event{timeout, m_event_fifo_id++, userdata, event_type}); std::push_heap(m_event_queue.begin(), m_event_queue.end(), std::greater()); } else { if (Core::WantsDeterminism()) { ERROR_LOG_FMT(POWERPC, "Someone scheduled an off-thread \"{}\" event while netplay or " "movie play/record was active. This is likely to cause a desync.", *event_type->name); } std::lock_guard lk(m_ts_write_lock); m_ts_queue.Push(Event{m_globals.global_timer + cycles_into_future, 0, userdata, event_type}); } } void CoreTimingManager::RemoveEvent(EventType* event_type) { auto itr = std::remove_if(m_event_queue.begin(), m_event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != m_event_queue.end()) { m_event_queue.erase(itr, m_event_queue.end()); std::make_heap(m_event_queue.begin(), m_event_queue.end(), std::greater()); } } void CoreTimingManager::RemoveAllEvents(EventType* event_type) { MoveEvents(); RemoveEvent(event_type); } void CoreTimingManager::ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); auto& ppc_state = m_system.GetPPCState(); if (DowncountToCycles(ppc_state.downcount) > cycles) { // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here. // Account for cycles already executed by adjusting the m_globals.slice_length m_globals.slice_length -= DowncountToCycles(ppc_state.downcount) - static_cast(cycles); ppc_state.downcount = CyclesToDowncount(static_cast(cycles)); } } void CoreTimingManager::MoveEvents() { for (Event ev; m_ts_queue.Pop(ev);) { ev.fifo_order = m_event_fifo_id++; m_event_queue.emplace_back(std::move(ev)); std::push_heap(m_event_queue.begin(), m_event_queue.end(), std::greater()); } } void CoreTimingManager::Advance() { CPUThreadConfigCallback::CheckForConfigChanges(); MoveEvents(); auto& power_pc = m_system.GetPowerPC(); auto& ppc_state = power_pc.GetPPCState(); int cyclesExecuted = m_globals.slice_length - DowncountToCycles(ppc_state.downcount); m_globals.global_timer += cyclesExecuted; m_last_oc_factor = m_config_oc_factor; m_globals.last_OC_factor_inverted = m_config_oc_inv_factor; m_globals.slice_length = MAX_SLICE_LENGTH; m_is_global_timer_sane = true; while (!m_event_queue.empty() && m_event_queue.front().time <= m_globals.global_timer) { Event evt = std::move(m_event_queue.front()); std::pop_heap(m_event_queue.begin(), m_event_queue.end(), std::greater()); m_event_queue.pop_back(); Throttle(evt.time); evt.type->callback(m_system, evt.userdata, m_globals.global_timer - evt.time); } m_is_global_timer_sane = false; // Still events left (scheduled in the future) if (!m_event_queue.empty()) { m_globals.slice_length = static_cast( std::min(m_event_queue.front().time - m_globals.global_timer, MAX_SLICE_LENGTH)); } ppc_state.downcount = CyclesToDowncount(m_globals.slice_length); // Check for any external exceptions. // It's important to do this after processing events otherwise any exceptions will be delayed // until the next slice: // Pokemon Box refuses to boot if the first exception from the audio DMA is received late power_pc.CheckExternalExceptions(); } void CoreTimingManager::Throttle(const s64 target_cycle) { // Based on number of cycles and emulation speed, increase the target deadline const s64 cycles = target_cycle - m_throttle_last_cycle; // Prevent any throttling code if the amount of time passed is < ~0.122ms if (cycles < m_throttle_min_clock_per_sleep) return; m_throttle_last_cycle = target_cycle; const double speed = Core::GetIsThrottlerTempDisabled() ? 0.0 : m_emulation_speed; if (0.0 < speed) m_throttle_deadline += std::chrono::duration_cast
(DT_s(cycles) / (speed * m_throttle_clock_per_sec)); const TimePoint time = Clock::now(); const TimePoint min_deadline = time - m_max_fallback; const TimePoint max_deadline = time + m_max_fallback; if (m_throttle_deadline > max_deadline) { m_throttle_deadline = max_deadline; } else if (m_throttle_deadline < min_deadline) { DEBUG_LOG_FMT(COMMON, "System can not to keep up with timings! [relaxing timings by {} us]", DT_us(min_deadline - m_throttle_deadline).count()); m_throttle_deadline = min_deadline; } const TimePoint vi_deadline = time - std::min(m_max_fallback, m_max_variance) / 2; // Skip the VI interrupt if the CPU is lagging by a certain amount. // It doesn't matter what amount of lag we skip VI at, as long as it's constant. m_throttle_disable_vi_int = 0.0 < speed && m_throttle_deadline < vi_deadline; // Only sleep if we are behind the deadline if (time < m_throttle_deadline) { std::this_thread::sleep_until(m_throttle_deadline); // Count amount of time sleeping for analytics const TimePoint time_after_sleep = Clock::now(); g_perf_metrics.CountThrottleSleep(time_after_sleep - time); } } void CoreTimingManager::ResetThrottle(s64 cycle) { m_throttle_last_cycle = cycle; m_throttle_deadline = Clock::now(); } TimePoint CoreTimingManager::GetCPUTimePoint(s64 cyclesLate) const { return TimePoint(std::chrono::duration_cast
(DT_s(m_globals.global_timer - cyclesLate) / m_throttle_clock_per_sec)); } bool CoreTimingManager::GetVISkip() const { return m_throttle_disable_vi_int && g_ActiveConfig.bVISkip && !Core::WantsDeterminism(); } bool CoreTimingManager::UseSyncOnSkipIdle() const { return m_config_sync_on_skip_idle; } void CoreTimingManager::LogPendingEvents() const { auto clone = m_event_queue; std::sort(clone.begin(), clone.end()); for (const Event& ev : clone) { INFO_LOG_FMT(POWERPC, "PENDING: Now: {} Pending: {} Type: {}", m_globals.global_timer, ev.time, *ev.type->name); } } // Should only be called from the CPU thread after the PPC clock has changed void CoreTimingManager::AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock) { m_throttle_clock_per_sec = new_ppc_clock; m_throttle_min_clock_per_sleep = new_ppc_clock / 1200; for (Event& ev : m_event_queue) { const s64 ticks = (ev.time - m_globals.global_timer) * new_ppc_clock / old_ppc_clock; ev.time = m_globals.global_timer + ticks; } } void CoreTimingManager::Idle() { if (m_config_sync_on_skip_idle) { // When the FIFO is processing data we must not advance because in this way // the VI will be desynchronized. So, We are waiting until the FIFO finish and // while we process only the events required by the FIFO. m_system.GetFifo().FlushGpu(); } auto& ppc_state = m_system.GetPPCState(); PowerPC::UpdatePerformanceMonitor(ppc_state.downcount, 0, 0, ppc_state); m_idled_cycles += DowncountToCycles(ppc_state.downcount); ppc_state.downcount = 0; } std::string CoreTimingManager::GetScheduledEventsSummary() const { std::string text = "Scheduled events\n"; text.reserve(1000); auto clone = m_event_queue; std::sort(clone.begin(), clone.end()); for (const Event& ev : clone) { text += fmt::format("{} : {} {:016x}\n", *ev.type->name, ev.time, ev.userdata); } return text; } u32 CoreTimingManager::GetFakeDecStartValue() const { return m_fake_dec_start_value; } void CoreTimingManager::SetFakeDecStartValue(u32 val) { m_fake_dec_start_value = val; } u64 CoreTimingManager::GetFakeDecStartTicks() const { return m_fake_dec_start_ticks; } void CoreTimingManager::SetFakeDecStartTicks(u64 val) { m_fake_dec_start_ticks = val; } u64 CoreTimingManager::GetFakeTBStartValue() const { return m_globals.fake_TB_start_value; } void CoreTimingManager::SetFakeTBStartValue(u64 val) { m_globals.fake_TB_start_value = val; } u64 CoreTimingManager::GetFakeTBStartTicks() const { return m_globals.fake_TB_start_ticks; } void CoreTimingManager::SetFakeTBStartTicks(u64 val) { m_globals.fake_TB_start_ticks = val; } void GlobalAdvance() { Core::System::GetInstance().GetCoreTiming().Advance(); } void GlobalIdle() { Core::System::GetInstance().GetCoreTiming().Idle(); } } // namespace CoreTiming