// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #pragma once #include "D3DBase.h" #include "FramebufferManagerBase.h" // On the GameCube, the game sends a request for the graphics processor to // transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM // called the XFB (External Framebuffer). The size and location of the XFB is // decided at the time of the copy, and the format is always YUYV. The video // interface is given a pointer to the XFB, which will be decoded and // displayed on the TV. // // There are two ways for Dolphin to emulate this: // // Real XFB mode: // // Dolphin will behave like the GameCube and encode the EFB to // a portion of GameCube RAM. The emulated video interface will decode the data // for output to the screen. // // Advantages: Behaves exactly like the GameCube. // Disadvantages: Resolution will be limited. // // Virtual XFB mode: // // When a request is made to copy the EFB to an XFB, Dolphin // will remember the RAM location and size of the XFB in a Virtual XFB list. // The video interface will look up the XFB in the list and use the enhanced // data stored there, if available. // // Advantages: Enables high resolution graphics, better than real hardware. // Disadvantages: If the GameCube CPU writes directly to the XFB (which is // possible but uncommon), the Virtual XFB will not capture this information. namespace DX9 { struct XFBSource : public XFBSourceBase { XFBSource(LPDIRECT3DTEXTURE9 tex) : texture(tex) {} ~XFBSource() { texture->Release(); } void Draw(const MathUtil::Rectangle<float> &sourcerc, const MathUtil::Rectangle<float> &drawrc, int width, int height) const; void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight); void CopyEFB(float Gamma); LPDIRECT3DTEXTURE9 const texture; }; class FramebufferManager : public FramebufferManagerBase { public: FramebufferManager(); ~FramebufferManager(); static LPDIRECT3DTEXTURE9 GetEFBColorTexture() { return s_efb.color_texture; } static LPDIRECT3DTEXTURE9 GetEFBDepthTexture() { return s_efb.depth_texture; } static LPDIRECT3DSURFACE9 GetEFBColorRTSurface() { return s_efb.color_surface; } static LPDIRECT3DSURFACE9 GetEFBDepthRTSurface() { return s_efb.depth_surface; } static LPDIRECT3DSURFACE9 GetEFBColorOffScreenRTSurface() { return s_efb.color_OffScreenReadBuffer; } static LPDIRECT3DSURFACE9 GetEFBDepthOffScreenRTSurface() { return s_efb.depth_OffScreenReadBuffer; } static D3DFORMAT GetEFBDepthRTSurfaceFormat() { return s_efb.depth_surface_Format; } static D3DFORMAT GetEFBColorRTSurfaceFormat() { return s_efb.color_surface_Format; } static D3DFORMAT GetEFBDepthReadSurfaceFormat() { return s_efb.depth_ReadBuffer_Format; } static LPDIRECT3DSURFACE9 GetEFBColorReadSurface() { return s_efb.color_ReadBuffer; } static LPDIRECT3DSURFACE9 GetEFBDepthReadSurface() { return s_efb.depth_ReadBuffer; } static LPDIRECT3DTEXTURE9 GetEFBColorReinterpretTexture() { return s_efb.color_reinterpret_texture; } static LPDIRECT3DSURFACE9 GetEFBColorReinterpretSurface() { return s_efb.color_reinterpret_surface; } static void SwapReinterpretTexture() { LPDIRECT3DSURFACE9 swapsurf = GetEFBColorReinterpretSurface(); LPDIRECT3DTEXTURE9 swaptex = GetEFBColorReinterpretTexture(); s_efb.color_reinterpret_surface = GetEFBColorRTSurface(); s_efb.color_reinterpret_texture = GetEFBColorTexture(); s_efb.color_surface = swapsurf; s_efb.color_texture = swaptex; } private: XFBSourceBase* CreateXFBSource(unsigned int target_width, unsigned int target_height); void GetTargetSize(unsigned int *width, unsigned int *height, const EFBRectangle& sourceRc); void CopyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma); static struct Efb { Efb() : color_texture(NULL), colorRead_texture(NULL), depth_texture(NULL), depthRead_texture(NULL), color_reinterpret_texture(NULL), color_reinterpret_surface(NULL), depth_surface(NULL), color_surface(NULL), color_ReadBuffer(NULL), depth_ReadBuffer(NULL), color_OffScreenReadBuffer(NULL), depth_OffScreenReadBuffer(NULL), color_surface_Format(D3DFMT_UNKNOWN), depth_surface_Format(D3DFMT_UNKNOWN), depth_ReadBuffer_Format(D3DFMT_UNKNOWN) {} LPDIRECT3DTEXTURE9 color_texture;//Texture thats contains the color data of the render target LPDIRECT3DTEXTURE9 colorRead_texture;//1 pixel texture for temporal data store LPDIRECT3DTEXTURE9 depth_texture;//Texture thats contains the depth data of the render target LPDIRECT3DTEXTURE9 depthRead_texture;//4 pixel texture for temporal data store LPDIRECT3DTEXTURE9 color_reinterpret_texture;//buffer used for ReinterpretPixelData LPDIRECT3DSURFACE9 color_reinterpret_surface;//corresponding surface LPDIRECT3DSURFACE9 depth_surface;//Depth Surface LPDIRECT3DSURFACE9 color_surface;//Color Surface LPDIRECT3DSURFACE9 color_ReadBuffer;//Surface 0 of colorRead_texture LPDIRECT3DSURFACE9 depth_ReadBuffer;//Surface 0 of depthRead_texture LPDIRECT3DSURFACE9 color_OffScreenReadBuffer;//System memory Surface that can be locked to retriebe the data LPDIRECT3DSURFACE9 depth_OffScreenReadBuffer;//System memory Surface that can be locked to retriebe the data D3DFORMAT color_surface_Format;//Format of the color Surface D3DFORMAT depth_surface_Format;//Format of the Depth Surface D3DFORMAT depth_ReadBuffer_Format;//Format of the Depth color Read Surface } s_efb; }; } // namespace DX9