// Copyright 2015 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/Flag.h" #include "Common/Logging/Log.h" #include "Common/MathUtil.h" #include "Common/ScopeGuard.h" #include "Common/StringUtil.h" #include "Common/Thread.h" #include "InputCommon/ControllerInterface/ControllerInterface.h" #include "InputCommon/ControllerInterface/evdev/evdev.h" namespace ciface { namespace evdev { static std::thread s_hotplug_thread; static Common::Flag s_hotplug_thread_running; static int s_wakeup_eventfd; // There is no easy way to get the device name from only a dev node // during a device removed event, since libevdev can't work on removed devices; // sysfs is not stable, so this is probably the easiest way to get a name for a node. static std::map s_devnode_name_map; static void HotplugThreadFunc() { Common::SetCurrentThreadName("evdev Hotplug Thread"); NOTICE_LOG(SERIALINTERFACE, "evdev hotplug thread started"); udev* const udev = udev_new(); Common::ScopeGuard udev_guard([udev] { udev_unref(udev); }); ASSERT_MSG(PAD, udev != nullptr, "Couldn't initialize libudev."); // Set up monitoring udev_monitor* const monitor = udev_monitor_new_from_netlink(udev, "udev"); Common::ScopeGuard monitor_guard([monitor] { udev_monitor_unref(monitor); }); udev_monitor_filter_add_match_subsystem_devtype(monitor, "input", nullptr); udev_monitor_enable_receiving(monitor); const int monitor_fd = udev_monitor_get_fd(monitor); while (s_hotplug_thread_running.IsSet()) { fd_set fds; FD_ZERO(&fds); FD_SET(monitor_fd, &fds); FD_SET(s_wakeup_eventfd, &fds); const int ret = select(std::max(monitor_fd, s_wakeup_eventfd) + 1, &fds, nullptr, nullptr, nullptr); if (ret < 1 || !FD_ISSET(monitor_fd, &fds)) continue; udev_device* const dev = udev_monitor_receive_device(monitor); Common::ScopeGuard dev_guard([dev] { udev_device_unref(dev); }); const char* const action = udev_device_get_action(dev); const char* const devnode = udev_device_get_devnode(dev); if (!devnode) continue; if (strcmp(action, "remove") == 0) { const auto it = s_devnode_name_map.find(devnode); if (it == s_devnode_name_map.end()) { // We don't know the name for this device, so it is probably not an evdev device. continue; } const std::string& name = it->second; g_controller_interface.RemoveDevice([&name](const auto& device) { return device->GetSource() == "evdev" && device->GetName() == name && !device->IsValid(); }); s_devnode_name_map.erase(devnode); } else if (strcmp(action, "add") == 0) { const auto device = std::make_shared(devnode); if (device->IsInteresting()) { s_devnode_name_map.emplace(devnode, device->GetName()); g_controller_interface.AddDevice(std::move(device)); } } } NOTICE_LOG(SERIALINTERFACE, "evdev hotplug thread stopped"); } static void StartHotplugThread() { // Mark the thread as running. if (!s_hotplug_thread_running.TestAndSet()) { // It was already running. return; } s_wakeup_eventfd = eventfd(0, 0); ASSERT_MSG(PAD, s_wakeup_eventfd != -1, "Couldn't create eventfd."); s_hotplug_thread = std::thread(HotplugThreadFunc); } static void StopHotplugThread() { // Tell the hotplug thread to stop. if (!s_hotplug_thread_running.TestAndClear()) { // It wasn't running, we're done. return; } // Write something to efd so that select() stops blocking. const uint64_t value = 1; static_cast(write(s_wakeup_eventfd, &value, sizeof(uint64_t))); s_hotplug_thread.join(); close(s_wakeup_eventfd); } void Init() { s_devnode_name_map.clear(); StartHotplugThread(); } void PopulateDevices() { // We use udev to iterate over all /dev/input/event* devices. // Note: the Linux kernel is currently limited to just 32 event devices. If // this ever changes, hopefully udev will take care of this. udev* const udev = udev_new(); ASSERT_MSG(PAD, udev != nullptr, "Couldn't initialize libudev."); // List all input devices udev_enumerate* const enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_subsystem(enumerate, "input"); udev_enumerate_scan_devices(enumerate); udev_list_entry* const devices = udev_enumerate_get_list_entry(enumerate); // Iterate over all input devices udev_list_entry* dev_list_entry; udev_list_entry_foreach(dev_list_entry, devices) { const char* path = udev_list_entry_get_name(dev_list_entry); udev_device* dev = udev_device_new_from_syspath(udev, path); const char* devnode = udev_device_get_devnode(dev); if (devnode) { // Unfortunately udev gives us no way to filter out the non event device interfaces. // So we open it and see if it works with evdev ioctls or not. const auto input = std::make_shared(devnode); if (input->IsInteresting()) { s_devnode_name_map.emplace(devnode, input->GetName()); g_controller_interface.AddDevice(std::move(input)); } } udev_device_unref(dev); } udev_enumerate_unref(enumerate); udev_unref(udev); } void Shutdown() { StopHotplugThread(); } evdevDevice::evdevDevice(const std::string& devnode) : m_devfile(devnode) { // The device file will be read on one of the main threads, so we open in non-blocking mode. m_fd = open(devnode.c_str(), O_RDWR | O_NONBLOCK); if (m_fd == -1) { return; } if (libevdev_new_from_fd(m_fd, &m_dev) != 0) { // This usually fails because the device node isn't an evdev device, such as /dev/input/js0 close(m_fd); m_fd = -1; return; } m_name = StripSpaces(libevdev_get_name(m_dev)); // Buttons (and keyboard keys) int num_buttons = 0; for (int key = 0; key < KEY_MAX; key++) { if (libevdev_has_event_code(m_dev, EV_KEY, key)) AddInput(new Button(num_buttons++, key, m_dev)); } // Absolute axis (thumbsticks) int num_axis = 0; for (int axis = 0; axis < 0x100; axis++) { if (libevdev_has_event_code(m_dev, EV_ABS, axis)) { AddAnalogInputs(new Axis(num_axis, axis, false, m_dev), new Axis(num_axis, axis, true, m_dev)); ++num_axis; } } // Disable autocenter if (libevdev_has_event_code(m_dev, EV_FF, FF_AUTOCENTER)) { input_event ie = {}; ie.type = EV_FF; ie.code = FF_AUTOCENTER; ie.value = 0; static_cast(write(m_fd, &ie, sizeof(ie))); } // Constant FF effect if (libevdev_has_event_code(m_dev, EV_FF, FF_CONSTANT)) { AddOutput(new ConstantEffect(m_fd)); } // Periodic FF effects if (libevdev_has_event_code(m_dev, EV_FF, FF_PERIODIC)) { for (auto wave : {FF_SINE, FF_SQUARE, FF_TRIANGLE, FF_SAW_UP, FF_SAW_DOWN}) { if (libevdev_has_event_code(m_dev, EV_FF, wave)) AddOutput(new PeriodicEffect(m_fd, wave)); } } // Rumble (i.e. Left/Right) (i.e. Strong/Weak) effect if (libevdev_has_event_code(m_dev, EV_FF, FF_RUMBLE)) { AddOutput(new RumbleEffect(m_fd, RumbleEffect::Motor::Strong)); AddOutput(new RumbleEffect(m_fd, RumbleEffect::Motor::Weak)); } // TODO: Add leds as output devices // Was there some reasoning behind these numbers? m_interesting = num_axis >= 2 || num_buttons >= 8; } evdevDevice::~evdevDevice() { if (m_fd != -1) { libevdev_free(m_dev); close(m_fd); } } void evdevDevice::UpdateInput() { // Run through all evdev events // libevdev will keep track of the actual controller state internally which can be queried // later with libevdev_fetch_event_value() int rc = LIBEVDEV_READ_STATUS_SUCCESS; while (rc >= 0) { input_event ev; if (LIBEVDEV_READ_STATUS_SYNC == rc) rc = libevdev_next_event(m_dev, LIBEVDEV_READ_FLAG_SYNC, &ev); else rc = libevdev_next_event(m_dev, LIBEVDEV_READ_FLAG_NORMAL, &ev); } } bool evdevDevice::IsValid() const { int current_fd = libevdev_get_fd(m_dev); if (current_fd == -1) return false; libevdev* device; if (libevdev_new_from_fd(current_fd, &device) != 0) { close(current_fd); return false; } libevdev_free(device); return true; } std::string evdevDevice::Button::GetName() const { // Buttons below 0x100 are mostly keyboard keys, and the names make sense if (m_code < 0x100) { const char* name = libevdev_event_code_get_name(EV_KEY, m_code); if (name) return StripSpaces(name); } // But controllers use codes above 0x100, and the standard label often doesn't match. // We are better off with Button 0 and so on. return "Button " + std::to_string(m_index); } ControlState evdevDevice::Button::GetState() const { int value = 0; libevdev_fetch_event_value(m_dev, EV_KEY, m_code, &value); return value; } evdevDevice::Axis::Axis(u8 index, u16 code, bool upper, libevdev* dev) : m_code(code), m_index(index), m_dev(dev) { const int min = libevdev_get_abs_minimum(m_dev, m_code); const int max = libevdev_get_abs_maximum(m_dev, m_code); m_base = (max + min) / 2; m_range = (upper ? max : min) - m_base; } std::string evdevDevice::Axis::GetName() const { return "Axis " + std::to_string(m_index) + (m_range < 0 ? '-' : '+'); } ControlState evdevDevice::Axis::GetState() const { int value = 0; libevdev_fetch_event_value(m_dev, EV_ABS, m_code, &value); return ControlState(value - m_base) / m_range; } evdevDevice::Effect::Effect(int fd) : m_fd(fd) { m_effect.id = -1; // Left (for wheels): m_effect.direction = 0x4000; m_effect.replay.length = RUMBLE_LENGTH_MS; // FYI: type is set within UpdateParameters. m_effect.type = DISABLED_EFFECT_TYPE; } std::string evdevDevice::ConstantEffect::GetName() const { return "Constant"; } std::string evdevDevice::PeriodicEffect::GetName() const { switch (m_effect.u.periodic.waveform) { case FF_SQUARE: return "Square"; case FF_TRIANGLE: return "Triangle"; case FF_SINE: return "Sine"; case FF_SAW_UP: return "Sawtooth Up"; case FF_SAW_DOWN: return "Sawtooth Down"; default: return "Unknown"; } } std::string evdevDevice::RumbleEffect::GetName() const { return (Motor::Strong == m_motor) ? "Strong" : "Weak"; } void evdevDevice::Effect::SetState(ControlState state) { if (UpdateParameters(state)) { // Update effect if parameters changed. UpdateEffect(); } } void evdevDevice::Effect::UpdateEffect() { // libevdev doesn't have nice helpers for forcefeedback // we will use the file descriptors directly. // Note: m_effect.type is set within UpdateParameters // to determine if effect should be playing or not. if (m_effect.type != DISABLED_EFFECT_TYPE) { if (-1 == m_effect.id) { // If effect was not uploaded (previously stopped) // we upload it and start playback ioctl(m_fd, EVIOCSFF, &m_effect); input_event play = {}; play.type = EV_FF; play.code = m_effect.id; play.value = 1; static_cast(write(m_fd, &play, sizeof(play))); } else { // Effect is already playing. Just update parameters. ioctl(m_fd, EVIOCSFF, &m_effect); } } else { // Stop and remove effect. ioctl(m_fd, EVIOCRMFF, m_effect.id); m_effect.id = -1; } } evdevDevice::ConstantEffect::ConstantEffect(int fd) : Effect(fd) { m_effect.u.constant = {}; } evdevDevice::PeriodicEffect::PeriodicEffect(int fd, u16 waveform) : Effect(fd) { m_effect.u.periodic = {}; m_effect.u.periodic.waveform = waveform; m_effect.u.periodic.period = RUMBLE_PERIOD_MS; m_effect.u.periodic.offset = 0; m_effect.u.periodic.phase = 0; } evdevDevice::RumbleEffect::RumbleEffect(int fd, Motor motor) : Effect(fd), m_motor(motor) { m_effect.u.rumble = {}; } bool evdevDevice::ConstantEffect::UpdateParameters(ControlState state) { s16& value = m_effect.u.constant.level; const s16 old_value = value; constexpr s16 MAX_VALUE = 0x7fff; value = s16(state * MAX_VALUE); m_effect.type = value ? FF_CONSTANT : DISABLED_EFFECT_TYPE; return value != old_value; } bool evdevDevice::PeriodicEffect::UpdateParameters(ControlState state) { s16& value = m_effect.u.periodic.magnitude; const s16 old_value = value; constexpr s16 MAX_VALUE = 0x7fff; value = s16(state * MAX_VALUE); m_effect.type = value ? FF_PERIODIC : DISABLED_EFFECT_TYPE; return value != old_value; } bool evdevDevice::RumbleEffect::UpdateParameters(ControlState state) { u16& value = (Motor::Strong == m_motor) ? m_effect.u.rumble.strong_magnitude : m_effect.u.rumble.weak_magnitude; const u16 old_value = value; constexpr u16 MAX_VALUE = 0xffff; value = u16(state * MAX_VALUE); m_effect.type = value ? FF_RUMBLE : DISABLED_EFFECT_TYPE; return value != old_value; } evdevDevice::Effect::~Effect() { m_effect.type = DISABLED_EFFECT_TYPE; UpdateEffect(); } } // namespace evdev } // namespace ciface