// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include "Common/CommonTypes.h" #include "Common/CPUDetect.h" #include "Common/x64Emitter.h" #include "Common/Logging/Log.h" namespace Gen { // TODO(ector): Add EAX special casing, for ever so slightly smaller code. struct NormalOpDef { u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; }; // 0xCC is code for invalid combination of immediates static const NormalOpDef normalops[11] = { {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from) {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG }; enum NormalSSEOps { sseCMP = 0xC2, sseADD = 0x58, //ADD sseSUB = 0x5C, //SUB sseAND = 0x54, //AND sseANDN = 0x55, //ANDN sseOR = 0x56, sseXOR = 0x57, sseMUL = 0x59, //MUL sseDIV = 0x5E, //DIV sseMIN = 0x5D, //MIN sseMAX = 0x5F, //MAX sseCOMIS = 0x2F, //COMIS sseUCOMIS = 0x2E, //UCOMIS sseSQRT = 0x51, //SQRT sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!) sseMOVAPfromRM = 0x28, //MOVAP from RM sseMOVAPtoRM = 0x29, //MOVAP to RM sseMOVUPfromRM = 0x10, //MOVUP from RM sseMOVUPtoRM = 0x11, //MOVUP to RM sseMOVLPDfromRM= 0x12, sseMOVLPDtoRM = 0x13, sseMOVHPDfromRM= 0x16, sseMOVHPDtoRM = 0x17, sseMOVHLPS = 0x12, sseMOVLHPS = 0x16, sseMASKMOVDQU = 0xF7, sseLDDQU = 0xF0, sseSHUF = 0xC6, sseMOVNTDQ = 0xE7, sseMOVNTP = 0x2B, }; void XEmitter::SetCodePtr(u8 *ptr) { code = ptr; } const u8 *XEmitter::GetCodePtr() const { return code; } u8 *XEmitter::GetWritableCodePtr() { return code; } void XEmitter::ReserveCodeSpace(int bytes) { for (int i = 0; i < bytes; i++) *code++ = 0xCC; } const u8 *XEmitter::AlignCode4() { int c = int((u64)code & 3); if (c) ReserveCodeSpace(4-c); return code; } const u8 *XEmitter::AlignCode16() { int c = int((u64)code & 15); if (c) ReserveCodeSpace(16-c); return code; } const u8 *XEmitter::AlignCodePage() { int c = int((u64)code & 4095); if (c) ReserveCodeSpace(4096-c); return code; } void XEmitter::WriteModRM(int mod, int reg, int rm) { Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); } void XEmitter::WriteSIB(int scale, int index, int base) { Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); } void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const { if (customOp == -1) customOp = operandReg; u8 op = 0x40; // REX.W (whether operation is a 64-bit operation) if (opBits == 64) op |= 8; // REX.R (whether ModR/M reg field refers to R8-R15. if (customOp & 8) op |= 4; // REX.X (whether ModR/M SIB index field refers to R8-R15) if (indexReg & 8) op |= 2; // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) if (offsetOrBaseReg & 8) op |= 1; // Write REX if wr have REX bits to write, or if the operation accesses // SIL, DIL, BPL, or SPL. if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || (opBits == 8 && (customOp & 0x10c) == 4)) { emit->Write8(op); // Check the operation doesn't access AH, BH, CH, or DH. _dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0); _dbg_assert_(DYNA_REC, (customOp & 0x100) == 0); } } void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const { int R = !(regOp1 & 8); int X = !(indexReg & 8); int B = !(offsetOrBaseReg & 8); int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); // do we need any VEX fields that only appear in the three-byte form? if (X == 1 && B == 1 && W == 0 && mmmmm == 1) { u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 1) | pp; emit->Write8(0xC5); emit->Write8(RvvvvLpp); } else { u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 1) | pp; emit->Write8(0xC4); emit->Write8(RXBmmmmm); emit->Write8(WvvvvLpp); } } void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg, bool warn_64bit_offset) const { if (_operandReg == INVALID_REG) _operandReg = (X64Reg)this->operandReg; int mod = 0; int ireg = indexReg; bool SIB = false; int _offsetOrBaseReg = this->offsetOrBaseReg; if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address { // Oh, RIP addressing. _offsetOrBaseReg = 5; emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); //TODO : add some checks u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; s64 distance = (s64)offset - (s64)ripAddr; _assert_msg_(DYNA_REC, (distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset, "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset); s32 offs = (s32)distance; emit->Write32((u32)offs); return; } if (scale == 0) { // Oh, no memory, Just a reg. mod = 3; //11 } else if (scale >= 1) { //Ah good, no scaling. if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) { //Okay, we're good. No SIB necessary. int ioff = (int)offset; if (ioff == 0) { mod = 0; } else if (ioff<-128 || ioff>127) { mod = 2; //32-bit displacement } else { mod = 1; //8-bit displacement } } else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) { SIB = true; mod = 0; _offsetOrBaseReg = 5; } else //if (scale != SCALE_ATREG) { if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :( { //So we have to fake it with SIB encoding :( SIB = true; } if (scale >= SCALE_1 && scale < SCALE_ATREG) { SIB = true; } if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) { SIB = true; ireg = _offsetOrBaseReg; } //Okay, we're fine. Just disp encoding. //We need displacement. Which size? int ioff = (int)(s64)offset; if (ioff < -128 || ioff > 127) { mod = 2; //32-bit displacement } else { mod = 1; //8-bit displacement } } } // Okay. Time to do the actual writing // ModRM byte: int oreg = _offsetOrBaseReg; if (SIB) oreg = 4; // TODO(ector): WTF is this if about? I don't remember writing it :-) //if (RIP) // oreg = 5; emit->WriteModRM(mod, _operandReg&7, oreg&7); if (SIB) { //SIB byte int ss; switch (scale) { case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP case SCALE_1: ss = 0; break; case SCALE_2: ss = 1; break; case SCALE_4: ss = 2; break; case SCALE_8: ss = 3; break; case SCALE_NOBASE_2: ss = 1; break; case SCALE_NOBASE_4: ss = 2; break; case SCALE_NOBASE_8: ss = 3; break; case SCALE_ATREG: ss = 0; break; default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break; } emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7))); } if (mod == 1) //8-bit disp { emit->Write8((u8)(s8)(s32)offset); } else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp { emit->Write32((u32)offset); } } // W = operand extended width (1 if 64-bit) // R = register# upper bit // X = scale amnt upper bit // B = base register# upper bit void XEmitter::Rex(int w, int r, int x, int b) { w = w ? 1 : 0; r = r ? 1 : 0; x = x ? 1 : 0; b = b ? 1 : 0; u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); if (rx != 0x40) Write8(rx); } void XEmitter::JMP(const u8 *addr, bool force5Bytes) { u64 fn = (u64)addr; if (!force5Bytes) { s64 distance = (s64)(fn - ((u64)code + 2)); _assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); //8 bits will do Write8(0xEB); Write8((u8)(s8)distance); } else { s64 distance = (s64)(fn - ((u64)code + 5)); _assert_msg_(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); Write8(0xE9); Write32((u32)(s32)distance); } } void XEmitter::JMPptr(const OpArg &arg2) { OpArg arg = arg2; if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument"); arg.operandReg = 4; arg.WriteRex(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } //Can be used to trap other processors, before overwriting their code // not used in dolphin void XEmitter::JMPself() { Write8(0xEB); Write8(0xFE); } void XEmitter::CALLptr(OpArg arg) { if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument"); arg.operandReg = 2; arg.WriteRex(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } void XEmitter::CALL(const void *fnptr) { u64 distance = u64(fnptr) - (u64(code) + 5); _assert_msg_(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL, "CALL out of range (%p calls %p)", code, fnptr); Write8(0xE8); Write32(u32(distance)); } FixupBranch XEmitter::J(bool force5bytes) { FixupBranch branch; branch.type = force5bytes ? 1 : 0; branch.ptr = code + (force5bytes ? 5 : 2); if (!force5bytes) { //8 bits will do Write8(0xEB); Write8(0); } else { Write8(0xE9); Write32(0); } return branch; } FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) { FixupBranch branch; branch.type = force5bytes ? 1 : 0; branch.ptr = code + (force5bytes ? 6 : 2); if (!force5bytes) { //8 bits will do Write8(0x70 + conditionCode); Write8(0); } else { Write8(0x0F); Write8(0x80 + conditionCode); Write32(0); } return branch; } void XEmitter::J_CC(CCFlags conditionCode, const u8* addr) { u64 fn = (u64)addr; s64 distance = (s64)(fn - ((u64)code + 2)); if (distance < -0x80 || distance >= 0x80) { distance = (s64)(fn - ((u64)code + 6)); _assert_msg_(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); Write8(0x0F); Write8(0x80 + conditionCode); Write32((u32)(s32)distance); } else { Write8(0x70 + conditionCode); Write8((u8)(s8)distance); } } void XEmitter::SetJumpTarget(const FixupBranch &branch) { if (branch.type == 0) { s64 distance = (s64)(code - branch.ptr); _assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); branch.ptr[-1] = (u8)(s8)distance; } else if (branch.type == 1) { s64 distance = (s64)(code - branch.ptr); _assert_msg_(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); ((s32*)branch.ptr)[-1] = (s32)distance; } } // INC/DEC considered harmful on newer CPUs due to partial flag set. // Use ADD, SUB instead. /* void XEmitter::INC(int bits, OpArg arg) { if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "INC - Imm argument"); arg.operandReg = 0; if (bits == 16) {Write8(0x66);} arg.WriteRex(this, bits, bits); Write8(bits == 8 ? 0xFE : 0xFF); arg.WriteRest(this); } void XEmitter::DEC(int bits, OpArg arg) { if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "DEC - Imm argument"); arg.operandReg = 1; if (bits == 16) {Write8(0x66);} arg.WriteRex(this, bits, bits); Write8(bits == 8 ? 0xFE : 0xFF); arg.WriteRest(this); } */ //Single byte opcodes //There is no PUSHAD/POPAD in 64-bit mode. void XEmitter::INT3() {Write8(0xCC);} void XEmitter::RET() {Write8(0xC3);} void XEmitter::RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret // The first sign of decadence: optimized NOPs. void XEmitter::NOP(size_t size) { _dbg_assert_(DYNA_REC, (int)size > 0); while (true) { switch (size) { case 0: return; case 1: Write8(0x90); return; case 2: Write8(0x66); Write8(0x90); return; case 3: Write8(0x0F); Write8(0x1F); Write8(0x00); return; case 4: Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00); return; case 5: Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 6: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 7: Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 8: Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 9: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 10: Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; default: // Even though x86 instructions are allowed to be up to 15 bytes long, // AMD advises against using NOPs longer than 11 bytes because they // carry a performance penalty on CPUs older than AMD family 16h. Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); size -= 11; continue; } } } void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu void XEmitter::CLC() {Write8(0xF8);} //clear carry void XEmitter::CMC() {Write8(0xF5);} //flip carry void XEmitter::STC() {Write8(0xF9);} //set carry //TODO: xchg ah, al ??? void XEmitter::XCHG_AHAL() { Write8(0x86); Write8(0xe0); // alt. 86 c4 } //These two can not be executed on early Intel 64-bit CPU:s, only on AMD! void XEmitter::LAHF() {Write8(0x9F);} void XEmitter::SAHF() {Write8(0x9E);} void XEmitter::PUSHF() {Write8(0x9C);} void XEmitter::POPF() {Write8(0x9D);} void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);} void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);} void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);} void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, (int)reg >> 3); Write8(byte + ((int)reg & 7)); } void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits==64, 0, 0, (int)reg >> 3); Write8(byte1); Write8(byte2 + ((int)reg & 7)); } void XEmitter::CWD(int bits) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, 0); Write8(0x99); } void XEmitter::CBW(int bits) { if (bits == 8) Write8(0x66); Rex(bits == 32, 0, 0, 0); Write8(0x98); } //Simple opcodes //push/pop do not need wide to be 64-bit void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);} void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);} void XEmitter::PUSH(int bits, const OpArg ®) { if (reg.IsSimpleReg()) PUSH(reg.GetSimpleReg()); else if (reg.IsImm()) { switch (reg.GetImmBits()) { case 8: Write8(0x6A); Write8((u8)(s8)reg.offset); break; case 16: Write8(0x66); Write8(0x68); Write16((u16)(s16)(s32)reg.offset); break; case 32: Write8(0x68); Write32((u32)reg.offset); break; default: _assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits"); break; } } else { if (bits == 16) Write8(0x66); reg.WriteRex(this, bits, bits); Write8(0xFF); reg.WriteRest(this, 0, (X64Reg)6); } } void XEmitter::POP(int /*bits*/, const OpArg ®) { if (reg.IsSimpleReg()) POP(reg.GetSimpleReg()); else _assert_msg_(DYNA_REC, 0, "POP - Unsupported encoding"); } void XEmitter::BSWAP(int bits, X64Reg reg) { if (bits >= 32) { WriteSimple2Byte(bits, 0x0F, 0xC8, reg); } else if (bits == 16) { ROL(16, R(reg), Imm8(8)); } else if (bits == 8) { // Do nothing - can't bswap a single byte... } else { _assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits"); } } // Undefined opcode - reserved // If we ever need a way to always cause a non-breakpoint hard exception... void XEmitter::UD2() { Write8(0x0F); Write8(0x0B); } void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) { _assert_msg_(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument"); arg.operandReg = (u8)level; arg.WriteRex(this, 0, 0); Write8(0x0F); Write8(0x18); arg.WriteRest(this); } void XEmitter::SETcc(CCFlags flag, OpArg dest) { _assert_msg_(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument"); dest.operandReg = 0; dest.WriteRex(this, 0, 8); Write8(0x0F); Write8(0x90 + (u8)flag); dest.WriteRest(this); } void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) { _assert_msg_(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument"); _assert_msg_(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported"); if (bits == 16) Write8(0x66); src.operandReg = dest; src.WriteRex(this, bits, bits); Write8(0x0F); Write8(0x40 + (u8)flag); src.WriteRest(this); } void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) { _assert_msg_(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument"); src.operandReg = ext; if (bits == 16) Write8(0x66); src.WriteRex(this, bits, bits, 0); if (bits == 8) { Write8(0xF6); } else { Write8(0xF7); } src.WriteRest(this); } void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);} void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);} void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);} void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);} void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);} void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);} void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) { _assert_msg_(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument"); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); if (rep) Write8(0xF3); src.WriteRex(this, bits, bits); Write8(0x0F); Write8(byte2); src.WriteRest(this); } void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src) { if (bits <= 16) _assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16"); WriteBitSearchType(bits, src, dest, 0xC3); } void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src) { if (!cpu_info.bBMI1) PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBC, true); } void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src) { if (!cpu_info.bLZCNT) PanicAlert("Trying to use LZCNT on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBD, true); } void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) { _assert_msg_(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); src.WriteRex(this, dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xBE); } else if (sbits == 16) { Write8(0x0F); Write8(0xBF); } else if (sbits == 32 && dbits == 64) { Write8(0x63); } else { Crash(); } src.WriteRest(this); } void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) { _assert_msg_(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); //the 32bit result is automatically zero extended to 64bit src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xB6); } else if (sbits == 16) { Write8(0x0F); Write8(0xB7); } else if (sbits == 32 && dbits == 64) { Write8(0x8B); } else { _assert_msg_(DYNA_REC, 0, "MOVZX - Invalid size"); } src.WriteRest(this); } void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src) { _assert_msg_(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it."); if (bits == 8) { MOV(bits, dest, src); return; } if (bits == 16) Write8(0x66); if (dest.IsSimpleReg()) { _assert_msg_(DYNA_REC, !src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem"); src.WriteRex(this, bits, bits, dest.GetSimpleReg()); Write8(0x0F); Write8(0x38); Write8(0xF0); src.WriteRest(this, 0, dest.GetSimpleReg()); } else if (src.IsSimpleReg()) { _assert_msg_(DYNA_REC, !dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem"); dest.WriteRex(this, bits, bits, src.GetSimpleReg()); Write8(0x0F); Write8(0x38); Write8(0xF1); dest.WriteRest(this, 0, src.GetSimpleReg()); } else { _assert_msg_(DYNA_REC, 0, "MOVBE: Not loading or storing to mem"); } } void XEmitter::LEA(int bits, X64Reg dest, OpArg src) { _assert_msg_(DYNA_REC, !src.IsImm(), "LEA - Imm argument"); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); //TODO: performance warning src.WriteRex(this, bits, bits); Write8(0x8D); src.WriteRest(this, 0, INVALID_REG, bits == 64); } //shift can be either imm8 or cl void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext) { bool writeImm = false; if (dest.IsImm()) { _assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { _assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument"); } dest.operandReg = ext; if (bits == 16) Write8(0x66); dest.WriteRex(this, bits, bits, 0); if (shift.GetImmBits() == 8) { //ok an imm u8 imm = (u8)shift.offset; if (imm == 1) { Write8(bits == 8 ? 0xD0 : 0xD1); } else { writeImm = true; Write8(bits == 8 ? 0xC0 : 0xC1); } } else { Write8(bits == 8 ? 0xD2 : 0xD3); } dest.WriteRest(this, writeImm ? 1 : 0); if (writeImm) Write8((u8)shift.offset); } // large rotates and shift are slower on intel than amd // intel likes to rotate by 1, and the op is smaller too void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);} void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);} void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);} void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);} void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);} void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);} void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);} // index can be either imm8 or register, don't use memory destination because it's slow void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext) { if (dest.IsImm()) { _assert_msg_(DYNA_REC, 0, "WriteBitTest - can't test imms"); } if ((index.IsImm() && index.GetImmBits() != 8)) { _assert_msg_(DYNA_REC, 0, "WriteBitTest - illegal argument"); } if (bits == 16) Write8(0x66); if (index.IsImm()) { dest.WriteRex(this, bits, bits); Write8(0x0F); Write8(0xBA); dest.WriteRest(this, 1, (X64Reg)ext); Write8((u8)index.offset); } else { X64Reg operand = index.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); Write8(0x0F); Write8(0x83 + 8*ext); dest.WriteRest(this, 1, operand); } } void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);} void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);} void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);} void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);} //shift can be either imm8 or cl void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift) { if (dest.IsImm()) { _assert_msg_(DYNA_REC, 0, "SHRD - can't use imms as destination"); } if (!src.IsSimpleReg()) { _assert_msg_(DYNA_REC, 0, "SHRD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { _assert_msg_(DYNA_REC, 0, "SHRD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xAC); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xAD); dest.WriteRest(this, 0, operand); } } void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift) { if (dest.IsImm()) { _assert_msg_(DYNA_REC, 0, "SHLD - can't use imms as destination"); } if (!src.IsSimpleReg()) { _assert_msg_(DYNA_REC, 0, "SHLD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { _assert_msg_(DYNA_REC, 0, "SHLD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xA4); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xA5); dest.WriteRest(this, 0, operand); } } void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits) { if (bits == 16) emit->Write8(0x66); this->operandReg = (u8)_operandReg; WriteRex(emit, bits, bits); emit->Write8(op); WriteRest(emit); } //operand can either be immediate or register void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const { X64Reg _operandReg; if (IsImm()) { _assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order"); } if (bits == 16) emit->Write8(0x66); int immToWrite = 0; if (operand.IsImm()) { WriteRex(emit, bits, bits); if (!toRM) { _assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)"); } if (operand.scale == SCALE_IMM8 && bits == 8) { // op al, imm8 if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC) { emit->Write8(normalops[op].eaximm8); emit->Write8((u8)operand.offset); return; } // mov reg, imm8 if (!scale && op == nrmMOV) { emit->Write8(0xB0 + (offsetOrBaseReg & 7)); emit->Write8((u8)operand.offset); return; } // op r/m8, imm8 emit->Write8(normalops[op].imm8); immToWrite = 8; } else if ((operand.scale == SCALE_IMM16 && bits == 16) || (operand.scale == SCALE_IMM32 && bits == 32) || (operand.scale == SCALE_IMM32 && bits == 64)) { // Try to save immediate size if we can, but first check to see // if the instruction supports simm8. // op r/m, imm8 if (normalops[op].simm8 != 0xCC && ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) { emit->Write8(normalops[op].simm8); immToWrite = 8; } else { // mov reg, imm if (!scale && op == nrmMOV && bits != 64) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op eax, imm if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC) { emit->Write8(normalops[op].eaximm32); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op r/m, imm emit->Write8(normalops[op].imm32); immToWrite = bits == 16 ? 16 : 32; } } else if ((operand.scale == SCALE_IMM8 && bits == 16) || (operand.scale == SCALE_IMM8 && bits == 32) || (operand.scale == SCALE_IMM8 && bits == 64)) { // op r/m, imm8 emit->Write8(normalops[op].simm8); immToWrite = 8; } else if (operand.scale == SCALE_IMM64 && bits == 64) { if (scale) { _assert_msg_(DYNA_REC, 0, "WriteNormalOp - MOV with 64-bit imm requres register destination"); } // mov reg64, imm64 else if (op == nrmMOV) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); emit->Write64((u64)operand.offset); return; } _assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm"); } else { _assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case"); } _operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM } else { _operandReg = (X64Reg)operand.offsetOrBaseReg; WriteRex(emit, bits, bits, _operandReg); // op r/m, reg if (toRM) { emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32); } // op reg, r/m else { emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32); } } WriteRest(emit, immToWrite >> 3, _operandReg); switch (immToWrite) { case 0: break; case 8: emit->Write8((u8)operand.offset); break; case 16: emit->Write16((u16)operand.offset); break; case 32: emit->Write32((u32)operand.offset); break; default: _assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case"); } } void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2) { if (a1.IsImm()) { //Booh! Can't write to an imm _assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm"); return; } if (a2.IsImm()) { a1.WriteNormalOp(emit, true, op, a2, bits); } else { if (a1.IsSimpleReg()) { a2.WriteNormalOp(emit, false, op, a1, bits); } else { _assert_msg_(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory"); a1.WriteNormalOp(emit, true, op, a2, bits); } } } void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmADD, a1, a2);} void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmADC, a1, a2);} void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmSUB, a1, a2);} void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmSBB, a1, a2);} void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmAND, a1, a2);} void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmOR , a1, a2);} void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXOR, a1, a2);} void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2) { if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) ERROR_LOG(DYNA_REC, "Redundant MOV @ %p - bug in JIT?", code); WriteNormalOp(this, bits, nrmMOV, a1, a2); } void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmTEST, a1, a2);} void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmCMP, a1, a2);} void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);} void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2) { if (bits == 8) { _assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!"); return; } if (a1.IsImm()) { _assert_msg_(DYNA_REC, 0, "IMUL - second arg cannot be imm!"); return; } if (!a2.IsImm()) { _assert_msg_(DYNA_REC, 0, "IMUL - third arg must be imm!"); return; } if (bits == 16) Write8(0x66); a1.WriteRex(this, bits, bits, regOp); if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) { Write8(0x6B); a1.WriteRest(this, 1, regOp); Write8((u8)a2.offset); } else { Write8(0x69); if (a2.GetImmBits() == 16 && bits == 16) { a1.WriteRest(this, 2, regOp); Write16((u16)a2.offset); } else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) { a1.WriteRest(this, 4, regOp); Write32((u32)a2.offset); } else { _assert_msg_(DYNA_REC, 0, "IMUL - unhandled case!"); } } } void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a) { if (bits == 8) { _assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!"); return; } if (a.IsImm()) { IMUL(bits, regOp, R(regOp), a) ; return; } if (bits == 16) Write8(0x66); a.WriteRex(this, bits, bits, regOp); Write8(0x0F); Write8(0xAF); a.WriteRest(this, 0, regOp); } void XEmitter::WriteSSEOp(int size, u16 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes) { if (size == 64 && packed) Write8(0x66); //this time, override goes upwards if (!packed) Write8(size == 64 ? 0xF2 : 0xF3); arg.operandReg = regOp; arg.WriteRex(this, 0, 0); Write8(0x0F); if (sseOp > 0xFF) Write8((sseOp >> 8) & 0xFF); Write8(sseOp & 0xFF); arg.WriteRest(this, extrabytes); } void XEmitter::WriteAVXOp(int size, u16 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes) { WriteAVXOp(size, sseOp, packed, regOp, X64Reg::INVALID_REG, arg, extrabytes); } void XEmitter::WriteAVXOp(int size, u16 sseOp, bool packed, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { if (!cpu_info.bAVX) PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer."); // Currently, only 0x38 and 0x3A are used as secondary escape byte. int mmmmm; if ((sseOp >> 8) == 0x3A) mmmmm = 3; else if ((sseOp >> 8) == 0x38) mmmmm = 2; else mmmmm = 1; // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here arg.WriteVex(this, regOp1, regOp2, 0, (packed << 1) | (size == 64), mmmmm); Write8(sseOp & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } // Like the above, but more general; covers GPR-based VEX operations, like BMI1/2 void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { if (size != 32 && size != 64) PanicAlert("VEX GPR instructions only support 32-bit and 64-bit modes!"); int mmmmm, pp; if ((op >> 8) == 0x3A) mmmmm = 3; else if ((op >> 8) == 0x38) mmmmm = 2; else mmmmm = 1; if (opPrefix == 0x66) pp = 1; else if (opPrefix == 0xF3) pp = 2; else if (opPrefix == 0xF2) pp = 3; else pp = 0; arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm, size == 64); Write8(op & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { if (!cpu_info.bBMI1) PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { if (!cpu_info.bBMI2) PanicAlert("Trying to use BMI2 on a system that doesn't support it. Bad programmer."); WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x6E, true, dest, arg, 0);} void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);} void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) { // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = dest; Write8(0x66); arg.WriteRex(this, 64, 0); Write8(0x0f); Write8(0x6E); arg.WriteRest(this, 0); } void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) { if (src > 7 || arg.IsSimpleReg()) { // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = src; Write8(0x66); arg.WriteRex(this, 64, 0); Write8(0x0f); Write8(0x7E); arg.WriteRest(this, 0); } else { arg.operandReg = src; arg.WriteRex(this, 0, 0); Write8(0x66); Write8(0x0f); Write8(0xD6); arg.WriteRest(this, 0); } } void XEmitter::WriteMXCSR(OpArg arg, int ext) { if (arg.IsImm() || arg.IsSimpleReg()) _assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand"); arg.operandReg = ext; arg.WriteRex(this, 0, 0); Write8(0x0F); Write8(0xAE); arg.WriteRest(this); } void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);} void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);} void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTDQ, true, regOp, arg);} void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVNTP, true, regOp, arg);} void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTP, true, regOp, arg);} void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, false, regOp, arg);} void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, false, regOp, arg);} void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, false, regOp, arg);} void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, false, regOp, arg);} void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, false, regOp, arg,1); Write8(compare);} void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, false, regOp, arg,1); Write8(compare);} void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, false, regOp, arg);} void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, false, regOp, arg);} void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, false, regOp, arg);} void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, false, regOp, arg);} void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, false, regOp, arg);} void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, false, regOp, arg);} void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, false, regOp, arg);} void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, false, regOp, arg);} void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, false, regOp, arg);} void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, false, regOp, arg);} void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, false, regOp, arg);} void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, true, regOp, arg);} void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, true, regOp, arg);} void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, true, regOp, arg);} void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, true, regOp, arg);} void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, true, regOp, arg,1); Write8(compare);} void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, true, regOp, arg,1); Write8(compare);} void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseAND, true, regOp, arg);} void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseAND, true, regOp, arg);} void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseANDN, true, regOp, arg);} void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseANDN, true, regOp, arg);} void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseOR, true, regOp, arg);} void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseOR, true, regOp, arg);} void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseXOR, true, regOp, arg);} void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseXOR, true, regOp, arg);} void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, true, regOp, arg);} void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, true, regOp, arg);} void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, true, regOp, arg);} void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, true, regOp, arg);} void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, true, regOp, arg);} void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, true, regOp, arg);} void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, true, regOp, arg);} void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, true, regOp, arg);} void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, true, regOp, arg);} void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, true, regOp, arg);} void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, true, regOp, arg);} void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(32, sseSHUF, true, regOp, arg,1); Write8(shuffle);} void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, sseSHUF, true, regOp, arg,1); Write8(shuffle);} void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseCOMIS, true, regOp, arg);} //weird that these should be packed void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseCOMIS, true, regOp, arg);} //ordered void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseUCOMIS, true, regOp, arg);} //unordered void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseUCOMIS, true, regOp, arg);} void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVAPfromRM, true, regOp, arg);} void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVAPfromRM, true, regOp, arg);} void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVAPtoRM, true, regOp, arg);} void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVAPtoRM, true, regOp, arg);} void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, true, regOp, arg);} void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, true, regOp, arg);} void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, true, regOp, arg);} void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, true, regOp, arg);} void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, false, regOp, arg);} void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, false, regOp, arg);} void XEmitter::MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, false, regOp, arg);} void XEmitter::MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, false, regOp, arg);} void XEmitter::MOVLPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVLPDfromRM, false, regOp, arg);} void XEmitter::MOVHPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVHPDfromRM, false, regOp, arg);} void XEmitter::MOVLPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVLPDtoRM, false, regOp, arg);} void XEmitter::MOVHPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVHPDtoRM, false, regOp, arg);} void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(32, sseMOVHLPS, true, regOp1, R(regOp2));} void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(32, sseMOVLHPS, true, regOp1, R(regOp2));} void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, true, regOp, arg);} void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, true, regOp, arg);} void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, false, regOp, arg);} void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, false, regOp, arg);} void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x2D, false, regOp, arg);} void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x2D, false, regOp, arg);} void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x2A, false, regOp, arg);} void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x2A, false, regOp, arg);} void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xE6, false, regOp, arg);} void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5B, true, regOp, arg);} void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, false, regOp, arg);} void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5B, true, regOp, arg);} void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x2C, false, regOp, arg);} void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x2C, false, regOp, arg);} void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5B, false, regOp, arg);} void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, true, regOp, arg);} void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(64, sseMASKMOVDQU, true, dest, R(src));} void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x50, true, dest, arg);} void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x50, true, dest, arg);} void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(64, sseLDDQU, false, dest, arg);} // For integer data only // THESE TWO ARE UNTESTED. void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x14, true, dest, arg);} void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x15, true, dest, arg);} void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x14, true, dest, arg);} void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x15, true, dest, arg);} void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg) { if (cpu_info.bSSE3) { WriteSSEOp(64, 0x12, false, regOp, arg); //SSE3 movddup } else { // Simulate this instruction with SSE2 instructions if (!arg.IsSimpleReg(regOp)) MOVSD(regOp, arg); UNPCKLPD(regOp, R(regOp)); } } //There are a few more left // Also some integer instructions are missing void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x6B, true, dest, arg);} void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x63, true, dest, arg);} void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x67, true, dest, arg);} void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x60, true, dest, arg);} void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, true, dest, arg);} void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);} //void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);} void XEmitter::PSRLW(X64Reg reg, int shift) { WriteSSEOp(64, 0x71, true, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLD(X64Reg reg, int shift) { WriteSSEOp(64, 0x72, true, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLQ(X64Reg reg, int shift) { WriteSSEOp(64, 0x73, true, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLQ(X64Reg reg, OpArg arg) { WriteSSEOp(64, 0xd3, true, reg, arg); } void XEmitter::PSLLW(X64Reg reg, int shift) { WriteSSEOp(64, 0x71, true, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLD(X64Reg reg, int shift) { WriteSSEOp(64, 0x72, true, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLQ(X64Reg reg, int shift) { WriteSSEOp(64, 0x73, true, (X64Reg)6, R(reg)); Write8(shift); } // WARNING not REX compatible void XEmitter::PSRAW(X64Reg reg, int shift) { if (reg > 7) PanicAlert("The PSRAW-emitter does not support regs above 7"); Write8(0x66); Write8(0x0f); Write8(0x71); Write8(0xE0 | reg); Write8(shift); } // WARNING not REX compatible void XEmitter::PSRAD(X64Reg reg, int shift) { if (reg > 7) PanicAlert("The PSRAD-emitter does not support regs above 7"); Write8(0x66); Write8(0x0f); Write8(0x72); Write8(0xE0 | reg); Write8(shift); } void XEmitter::WriteSSSE3Op(int size, u16 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes) { if (!cpu_info.bSSSE3) PanicAlert("Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); WriteSSEOp(size, sseOp, packed, regOp, arg, extrabytes); } void XEmitter::WriteSSE41Op(int size, u16 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes) { if (!cpu_info.bSSE4_1) PanicAlert("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); WriteSSEOp(size, sseOp, packed, regOp, arg, extrabytes); } void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {WriteSSSE3Op(64, 0x3800, true, dest, arg);} void XEmitter::PTEST(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3817, true, dest, arg);} void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x382b, true, dest, arg);} void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3820, true, dest, arg);} void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3821, true, dest, arg);} void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3822, true, dest, arg);} void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3823, true, dest, arg);} void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3824, true, dest, arg);} void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3825, true, dest, arg);} void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3830, true, dest, arg);} void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3831, true, dest, arg);} void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3832, true, dest, arg);} void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3833, true, dest, arg);} void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3834, true, dest, arg);} void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3835, true, dest, arg);} void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3810, true, dest, arg);} void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3814, true, dest, arg);} void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(64, 0x3815, true, dest, arg);} void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDB, true, dest, arg);} void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDF, true, dest, arg);} void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEF, true, dest, arg);} void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEB, true, dest, arg);} void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFC, true, dest, arg);} void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFD, true, dest, arg);} void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFE, true, dest, arg);} void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD4, true, dest, arg);} void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEC, true, dest, arg);} void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xED, true, dest, arg);} void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDC, true, dest, arg);} void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDD, true, dest, arg);} void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF8, true, dest, arg);} void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF9, true, dest, arg);} void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFA, true, dest, arg);} void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFB, true, dest, arg);} void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE8, true, dest, arg);} void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE9, true, dest, arg);} void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD8, true, dest, arg);} void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD9, true, dest, arg);} void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE0, true, dest, arg);} void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE3, true, dest, arg);} void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x74, true, dest, arg);} void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x75, true, dest, arg);} void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x76, true, dest, arg);} void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x64, true, dest, arg);} void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x65, true, dest, arg);} void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);} void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0xC5, true, dest, arg); Write8(subreg);} void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0xC4, true, dest, arg); Write8(subreg);} void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF5, true, dest, arg); } void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF6, true, dest, arg);} void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEE, true, dest, arg); } void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDE, true, dest, arg); } void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEA, true, dest, arg); } void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDA, true, dest, arg); } void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD7, true, dest, arg); } void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, 0x70, false, regOp, arg, 1); Write8(shuffle);} // VEX void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseADD, false, regOp1, regOp2, arg);} void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseSUB, false, regOp1, regOp2, arg);} void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseMUL, false, regOp1, regOp2, arg);} void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseDIV, false, regOp1, regOp2, arg);} void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseSQRT, false, regOp1, regOp2, arg);} void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseAND, false, regOp1, regOp2, arg);} void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseANDN, false, regOp1, regOp2, arg);} void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);} void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);} void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);} void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);} void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);} void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);} void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);} void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);} void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);} void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);} void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);} void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);} void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);} // Prefixes void XEmitter::LOCK() { Write8(0xF0); } void XEmitter::REP() { Write8(0xF3); } void XEmitter::REPNE() { Write8(0xF2); } void XEmitter::FSOverride() { Write8(0x64); } void XEmitter::GSOverride() { Write8(0x65); } void XEmitter::FWAIT() { Write8(0x9B); } // TODO: make this more generic void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg) { int mf = 0; _assert_msg_(DYNA_REC, !(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction"); switch (bits) { case 32: mf = 0; break; case 64: mf = 4; break; case 80: mf = 2; break; default: _assert_msg_(DYNA_REC, 0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)"); } Write8(0xd9 | mf); // x87 instructions use the reg field of the ModR/M byte as opcode: if (bits == 80) op = op_80b; arg.WriteRest(this, 0, (X64Reg) op); } void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);} void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);} void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);} void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); } void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); } // helper routines for setting pointers void XEmitter::CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2) { #ifdef _MSC_VER MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); CALL(fnptr); #else MOV(32, R(RDI), Imm32(arg0)); MOV(32, R(RSI), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg2)); CALL(fnptr); #endif } void XEmitter::CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) { #ifdef _MSC_VER MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); MOV(32, R(R9), Imm32(arg3)); CALL(fnptr); #else MOV(32, R(RDI), Imm32(arg0)); MOV(32, R(RSI), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg2)); MOV(32, R(RCX), Imm32(arg3)); CALL(fnptr); #endif } void XEmitter::CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) { #ifdef _MSC_VER MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); MOV(32, R(R9), Imm32(arg3)); MOV(32, MDisp(RSP, 0x20), Imm32(arg4)); CALL(fnptr); #else MOV(32, R(RDI), Imm32(arg0)); MOV(32, R(RSI), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg2)); MOV(32, R(RCX), Imm32(arg3)); MOV(32, R(R8), Imm32(arg4)); CALL(fnptr); #endif } void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) { #ifdef _MSC_VER MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); MOV(32, R(R9), Imm32(arg3)); MOV(32, MDisp(RSP, 0x20), Imm32(arg4)); MOV(32, MDisp(RSP, 0x28), Imm32(arg5)); CALL(fnptr); #else MOV(32, R(RDI), Imm32(arg0)); MOV(32, R(RSI), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg2)); MOV(32, R(RCX), Imm32(arg3)); MOV(32, R(R8), Imm32(arg4)); MOV(32, R(R9), Imm32(arg5)); CALL(fnptr); #endif } // See header void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) { MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); CALLptr(M(impptr)); } void XEmitter::___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) { MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); MOV(32, R(R9), Imm32(arg3)); CALLptr(M(impptr)); } void XEmitter::___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) { MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); MOV(32, R(R9), Imm32(arg3)); MOV(32, MDisp(RSP, 0x20), Imm32(arg4)); CALLptr(M(impptr)); } void XEmitter::___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) { MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(R8), Imm32(arg2)); MOV(32, R(R9), Imm32(arg3)); MOV(32, MDisp(RSP, 0x20), Imm32(arg4)); MOV(32, MDisp(RSP, 0x28), Imm32(arg5)); CALLptr(M(impptr)); } }