// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/VertexShaderManager.h" #include #include #include #include #include "Common/BitSet.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/Matrix.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" alignas(16) static std::array g_fProjectionMatrix; // track changes static std::array bTexMatricesChanged; static bool bPosNormalMatrixChanged; static bool bProjectionChanged; static bool bViewportChanged; static bool bTexMtxInfoChanged; static bool bLightingConfigChanged; static BitSet32 nMaterialsChanged; static std::array nTransformMatricesChanged; // min,max static std::array nNormalMatricesChanged; // min,max static std::array nPostTransformMatricesChanged; // min,max static std::array nLightsChanged; // min,max static Common::Matrix44 s_viewportCorrection; static Common::Matrix44 s_freelook_matrix; VertexShaderConstants VertexShaderManager::constants; bool VertexShaderManager::dirty; // Viewport correction: // In D3D, the viewport rectangle must fit within the render target. // Say you want a viewport at (ix, iy) with size (iw, ih), // but your viewport must be clamped at (ax, ay) with size (aw, ah). // Just multiply the projection matrix with the following to get the same // effect: // [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ] // [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ] // [ 0 0 1 0 ] // [ 0 0 0 1 ] static void ViewportCorrectionMatrix(Common::Matrix44& result) { int scissorXOff = bpmem.scissorOffset.x * 2; int scissorYOff = bpmem.scissorOffset.y * 2; // TODO: ceil, floor or just cast to int? // TODO: Directly use the floats instead of rounding them? float intendedX = xfmem.viewport.xOrig - xfmem.viewport.wd - scissorXOff; float intendedY = xfmem.viewport.yOrig + xfmem.viewport.ht - scissorYOff; float intendedWd = 2.0f * xfmem.viewport.wd; float intendedHt = -2.0f * xfmem.viewport.ht; if (intendedWd < 0.f) { intendedX += intendedWd; intendedWd = -intendedWd; } if (intendedHt < 0.f) { intendedY += intendedHt; intendedHt = -intendedHt; } // fit to EFB size float X = (intendedX >= 0.f) ? intendedX : 0.f; float Y = (intendedY >= 0.f) ? intendedY : 0.f; float Wd = (X + intendedWd <= EFB_WIDTH) ? intendedWd : (EFB_WIDTH - X); float Ht = (Y + intendedHt <= EFB_HEIGHT) ? intendedHt : (EFB_HEIGHT - Y); result = Common::Matrix44::Identity(); if (Wd == 0 || Ht == 0) return; result.data[4 * 0 + 0] = intendedWd / Wd; result.data[4 * 0 + 3] = (intendedWd - 2.f * (X - intendedX)) / Wd - 1.f; result.data[4 * 1 + 1] = intendedHt / Ht; result.data[4 * 1 + 3] = (-intendedHt + 2.f * (Y - intendedY)) / Ht + 1.f; } void VertexShaderManager::Init() { // Initialize state tracking variables nTransformMatricesChanged.fill(-1); nNormalMatricesChanged.fill(-1); nPostTransformMatricesChanged.fill(-1); nLightsChanged.fill(-1); nMaterialsChanged = BitSet32(0); bTexMatricesChanged.fill(false); bPosNormalMatrixChanged = false; bProjectionChanged = true; bViewportChanged = false; bTexMtxInfoChanged = false; bLightingConfigChanged = false; std::memset(static_cast(&xfmem), 0, sizeof(xfmem)); constants = {}; ResetView(); // TODO: should these go inside ResetView()? s_viewportCorrection = Common::Matrix44::Identity(); g_fProjectionMatrix = Common::Matrix44::Identity().data; dirty = true; } void VertexShaderManager::Dirty() { // This function is called after a savestate is loaded. // Any constants that can changed based on settings should be re-calculated bProjectionChanged = true; dirty = true; } // Syncs the shader constant buffers with xfmem // TODO: A cleaner way to control the matrices without making a mess in the parameters field void VertexShaderManager::SetConstants() { if (nTransformMatricesChanged[0] >= 0) { int startn = nTransformMatricesChanged[0] / 4; int endn = (nTransformMatricesChanged[1] + 3) / 4; memcpy(constants.transformmatrices[startn].data(), &xfmem.posMatrices[startn * 4], (endn - startn) * sizeof(float4)); dirty = true; nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; } if (nNormalMatricesChanged[0] >= 0) { int startn = nNormalMatricesChanged[0] / 3; int endn = (nNormalMatricesChanged[1] + 2) / 3; for (int i = startn; i < endn; i++) { memcpy(constants.normalmatrices[i].data(), &xfmem.normalMatrices[3 * i], 12); } dirty = true; nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; } if (nPostTransformMatricesChanged[0] >= 0) { int startn = nPostTransformMatricesChanged[0] / 4; int endn = (nPostTransformMatricesChanged[1] + 3) / 4; memcpy(constants.posttransformmatrices[startn].data(), &xfmem.postMatrices[startn * 4], (endn - startn) * sizeof(float4)); dirty = true; nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1; } if (nLightsChanged[0] >= 0) { // TODO: Outdated comment // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0] / 0x10; int iend = (nLightsChanged[1] + 15) / 0x10; for (int i = istart; i < iend; ++i) { const Light& light = xfmem.lights[i]; VertexShaderConstants::Light& dstlight = constants.lights[i]; // xfmem.light.color is packed as abgr in u8[4], so we have to swap the order dstlight.color[0] = light.color[3]; dstlight.color[1] = light.color[2]; dstlight.color[2] = light.color[1]; dstlight.color[3] = light.color[0]; dstlight.cosatt[0] = light.cosatt[0]; dstlight.cosatt[1] = light.cosatt[1]; dstlight.cosatt[2] = light.cosatt[2]; if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f && fabs(light.distatt[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! dstlight.distatt[0] = .00001f; } else { dstlight.distatt[0] = light.distatt[0]; } dstlight.distatt[1] = light.distatt[1]; dstlight.distatt[2] = light.distatt[2]; dstlight.pos[0] = light.dpos[0]; dstlight.pos[1] = light.dpos[1]; dstlight.pos[2] = light.dpos[2]; double norm = double(light.ddir[0]) * double(light.ddir[0]) + double(light.ddir[1]) * double(light.ddir[1]) + double(light.ddir[2]) * double(light.ddir[2]); norm = 1.0 / sqrt(norm); float norm_float = static_cast(norm); dstlight.dir[0] = light.ddir[0] * norm_float; dstlight.dir[1] = light.ddir[1] * norm_float; dstlight.dir[2] = light.ddir[2] * norm_float; } dirty = true; nLightsChanged[0] = nLightsChanged[1] = -1; } for (int i : nMaterialsChanged) { u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i]; constants.materials[i][0] = (data >> 24) & 0xFF; constants.materials[i][1] = (data >> 16) & 0xFF; constants.materials[i][2] = (data >> 8) & 0xFF; constants.materials[i][3] = data & 0xFF; dirty = true; } nMaterialsChanged = BitSet32(0); if (bPosNormalMatrixChanged) { bPosNormalMatrixChanged = false; const float* pos = &xfmem.posMatrices[g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4]; const float* norm = &xfmem.normalMatrices[3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31)]; memcpy(constants.posnormalmatrix.data(), pos, 3 * sizeof(float4)); memcpy(constants.posnormalmatrix[3].data(), norm, 3 * sizeof(float)); memcpy(constants.posnormalmatrix[4].data(), norm + 3, 3 * sizeof(float)); memcpy(constants.posnormalmatrix[5].data(), norm + 6, 3 * sizeof(float)); dirty = true; } if (bTexMatricesChanged[0]) { bTexMatricesChanged[0] = false; const std::array pos_matrix_ptrs{ &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4], }; for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i) { memcpy(constants.texmatrices[3 * i].data(), pos_matrix_ptrs[i], 3 * sizeof(float4)); } dirty = true; } if (bTexMatricesChanged[1]) { bTexMatricesChanged[1] = false; const std::array pos_matrix_ptrs{ &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4], }; for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i) { memcpy(constants.texmatrices[3 * i + 12].data(), pos_matrix_ptrs[i], 3 * sizeof(float4)); } dirty = true; } if (bViewportChanged) { bViewportChanged = false; // The console GPU places the pixel center at 7/12 unless antialiasing // is enabled, while D3D and OpenGL place it at 0.5. See the comment // in VertexShaderGen.cpp for details. // NOTE: If we ever emulate antialiasing, the sample locations set by // BP registers 0x01-0x04 need to be considered here. const float pixel_center_correction = 7.0f / 12.0f - 0.5f; const bool bUseVertexRounding = g_ActiveConfig.bVertexRounding && g_ActiveConfig.iEFBScale != 1; const float viewport_width = bUseVertexRounding ? (2.f * xfmem.viewport.wd) : g_renderer->EFBToScaledXf(2.f * xfmem.viewport.wd); const float viewport_height = bUseVertexRounding ? (2.f * xfmem.viewport.ht) : g_renderer->EFBToScaledXf(2.f * xfmem.viewport.ht); const float pixel_size_x = 2.f / viewport_width; const float pixel_size_y = 2.f / viewport_height; constants.pixelcentercorrection[0] = pixel_center_correction * pixel_size_x; constants.pixelcentercorrection[1] = pixel_center_correction * pixel_size_y; // By default we don't change the depth value at all in the vertex shader. constants.pixelcentercorrection[2] = 1.0f; constants.pixelcentercorrection[3] = 0.0f; constants.viewport[0] = (2.f * xfmem.viewport.wd); constants.viewport[1] = (2.f * xfmem.viewport.ht); if (g_renderer->UseVertexDepthRange()) { // Oversized depth ranges are handled in the vertex shader. We need to reverse // the far value to use the reversed-Z trick. if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange) { // Sometimes the console also tries to use the reversed-Z trick. We can only do // that with the expected accuracy if the backend can reverse the depth range. constants.pixelcentercorrection[2] = fabs(xfmem.viewport.zRange) / 16777215.0f; if (xfmem.viewport.zRange < 0.0f) constants.pixelcentercorrection[3] = xfmem.viewport.farZ / 16777215.0f; else constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f; } else { // For backends that don't support reversing the depth range we can still render // cases where the console uses the reversed-Z trick. But we simply can't provide // the expected accuracy, which might result in z-fighting. constants.pixelcentercorrection[2] = xfmem.viewport.zRange / 16777215.0f; constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f; } } dirty = true; BPFunctions::SetViewport(); // Update projection if the viewport isn't 1:1 useable if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports) { ViewportCorrectionMatrix(s_viewportCorrection); bProjectionChanged = true; } } if (bProjectionChanged) { bProjectionChanged = false; const auto& rawProjection = xfmem.projection.rawProjection; switch (xfmem.projection.type) { case GX_PERSPECTIVE: g_fProjectionMatrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = rawProjection[1] * g_ActiveConfig.fAspectRatioHackW; g_fProjectionMatrix[3] = 0.0f; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH; g_fProjectionMatrix[6] = rawProjection[3] * g_ActiveConfig.fAspectRatioHackH; g_fProjectionMatrix[7] = 0.0f; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = rawProjection[4]; g_fProjectionMatrix[11] = rawProjection[5]; g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; g_fProjectionMatrix[14] = -1.0f; g_fProjectionMatrix[15] = 0.0f; stats.gproj = g_fProjectionMatrix; break; case GX_ORTHOGRAPHIC: g_fProjectionMatrix[0] = rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = 0.0f; g_fProjectionMatrix[3] = rawProjection[1]; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = rawProjection[2]; g_fProjectionMatrix[6] = 0.0f; g_fProjectionMatrix[7] = rawProjection[3]; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = rawProjection[4]; g_fProjectionMatrix[11] = rawProjection[5]; g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; g_fProjectionMatrix[14] = 0.0f; g_fProjectionMatrix[15] = 1.0f; stats.g2proj = g_fProjectionMatrix; stats.proj = rawProjection; break; default: ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type); } PRIM_LOG("Projection: %f %f %f %f %f %f", rawProjection[0], rawProjection[1], rawProjection[2], rawProjection[3], rawProjection[4], rawProjection[5]); auto corrected_matrix = s_viewportCorrection * Common::Matrix44::FromArray(g_fProjectionMatrix); if (g_ActiveConfig.bFreeLook && xfmem.projection.type == GX_PERSPECTIVE) corrected_matrix *= s_freelook_matrix; memcpy(constants.projection.data(), corrected_matrix.data.data(), 4 * sizeof(float4)); dirty = true; } if (bTexMtxInfoChanged) { bTexMtxInfoChanged = false; constants.xfmem_dualTexInfo = xfmem.dualTexTrans.enabled; for (size_t i = 0; i < std::size(xfmem.texMtxInfo); i++) constants.xfmem_pack1[i][0] = xfmem.texMtxInfo[i].hex; for (size_t i = 0; i < std::size(xfmem.postMtxInfo); i++) constants.xfmem_pack1[i][1] = xfmem.postMtxInfo[i].hex; dirty = true; } if (bLightingConfigChanged) { bLightingConfigChanged = false; for (size_t i = 0; i < 2; i++) { constants.xfmem_pack1[i][2] = xfmem.color[i].hex; constants.xfmem_pack1[i][3] = xfmem.alpha[i].hex; } constants.xfmem_numColorChans = xfmem.numChan.numColorChans; dirty = true; } } void VertexShaderManager::InvalidateXFRange(int start, int end) { if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 + 12) || ((u32)start >= XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 && (u32)start < XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 + 9)) { bPosNormalMatrixChanged = true; } if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 + 12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 + 12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 + 12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 + 12)) { bTexMatricesChanged[0] = true; } if (((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 + 12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 + 12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 + 12) || ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 && (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 + 12)) { bTexMatricesChanged[1] = true; } if (start < XFMEM_POSMATRICES_END) { if (nTransformMatricesChanged[0] == -1) { nTransformMatricesChanged[0] = start; nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end; } else { if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start; if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end; } } if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) { int _start = start < XFMEM_NORMALMATRICES ? 0 : start - XFMEM_NORMALMATRICES; int _end = end < XFMEM_NORMALMATRICES_END ? end - XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END - XFMEM_NORMALMATRICES; if (nNormalMatricesChanged[0] == -1) { nNormalMatricesChanged[0] = _start; nNormalMatricesChanged[1] = _end; } else { if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start; if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end; } } if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) { int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start - XFMEM_POSTMATRICES; int _end = end < XFMEM_POSTMATRICES_END ? end - XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END - XFMEM_POSTMATRICES; if (nPostTransformMatricesChanged[0] == -1) { nPostTransformMatricesChanged[0] = _start; nPostTransformMatricesChanged[1] = _end; } else { if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start; if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end; } } if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start - XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end - XFMEM_LIGHTS : XFMEM_LIGHTS_END - XFMEM_LIGHTS; if (nLightsChanged[0] == -1) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void VertexShaderManager::SetTexMatrixChangedA(u32 Value) { if (g_main_cp_state.matrix_index_a.Hex != Value) { g_vertex_manager->Flush(); if (g_main_cp_state.matrix_index_a.PosNormalMtxIdx != (Value & 0x3f)) bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; g_main_cp_state.matrix_index_a.Hex = Value; } } void VertexShaderManager::SetTexMatrixChangedB(u32 Value) { if (g_main_cp_state.matrix_index_b.Hex != Value) { g_vertex_manager->Flush(); bTexMatricesChanged[1] = true; g_main_cp_state.matrix_index_b.Hex = Value; } } void VertexShaderManager::SetViewportChanged() { bViewportChanged = true; } void VertexShaderManager::SetProjectionChanged() { bProjectionChanged = true; } void VertexShaderManager::SetMaterialColorChanged(int index) { nMaterialsChanged[index] = true; } void VertexShaderManager::TranslateView(float x, float y, float z) { s_freelook_matrix = Common::Matrix44::Translate({x, z, y}) * s_freelook_matrix; bProjectionChanged = true; } void VertexShaderManager::RotateView(float x, float y, float z) { using Common::Matrix33; s_freelook_matrix = Common::Matrix44::FromMatrix33(Matrix33::RotateX(x) * Matrix33::RotateY(y) * Matrix33::RotateZ(z)) * s_freelook_matrix; bProjectionChanged = true; } void VertexShaderManager::ResetView() { s_freelook_matrix = Common::Matrix44::Identity(); bProjectionChanged = true; } void VertexShaderManager::SetVertexFormat(u32 components) { if (components != constants.components) { constants.components = components; dirty = true; } } void VertexShaderManager::SetTexMatrixInfoChanged(int index) { // TODO: Should we track this with more precision, like which indices changed? // The whole vertex constants are probably going to be uploaded regardless. bTexMtxInfoChanged = true; } void VertexShaderManager::SetLightingConfigChanged() { bLightingConfigChanged = true; } void VertexShaderManager::TransformToClipSpace(const float* data, float* out, u32 MtxIdx) { const float* world_matrix = &xfmem.posMatrices[(MtxIdx & 0x3f) * 4]; // We use the projection matrix calculated by VertexShaderManager, because it // includes any free look transformations. // Make sure VertexShaderManager::SetConstants() has been called first. const float* proj_matrix = &g_fProjectionMatrix[0]; const float t[3] = {data[0] * world_matrix[0] + data[1] * world_matrix[1] + data[2] * world_matrix[2] + world_matrix[3], data[0] * world_matrix[4] + data[1] * world_matrix[5] + data[2] * world_matrix[6] + world_matrix[7], data[0] * world_matrix[8] + data[1] * world_matrix[9] + data[2] * world_matrix[10] + world_matrix[11]}; out[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3]; out[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7]; out[2] = t[0] * proj_matrix[8] + t[1] * proj_matrix[9] + t[2] * proj_matrix[10] + proj_matrix[11]; out[3] = t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15]; } void VertexShaderManager::DoState(PointerWrap& p) { p.DoArray(g_fProjectionMatrix); p.Do(s_viewportCorrection); p.Do(s_freelook_matrix); p.DoArray(nTransformMatricesChanged); p.DoArray(nNormalMatricesChanged); p.DoArray(nPostTransformMatricesChanged); p.DoArray(nLightsChanged); p.Do(nMaterialsChanged); p.DoArray(bTexMatricesChanged); p.Do(bPosNormalMatrixChanged); p.Do(bProjectionChanged); p.Do(bViewportChanged); p.Do(bTexMtxInfoChanged); p.Do(bLightingConfigChanged); p.Do(constants); if (p.GetMode() == PointerWrap::MODE_READ) { Dirty(); } }