// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#pragma once

#include <d3d11.h>
#include <memory>
#include <utility>

#include "Common/CommonTypes.h"
#include "VideoBackends/D3D/D3DTexture.h"
#include "VideoCommon/FramebufferManagerBase.h"

namespace DX11
{
// On the GameCube, the game sends a request for the graphics processor to
// transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM
// called the XFB (External Framebuffer). The size and location of the XFB is
// decided at the time of the copy, and the format is always YUYV. The video
// interface is given a pointer to the XFB, which will be decoded and
// displayed on the TV.
//
// There are two ways for Dolphin to emulate this:
//
// Real XFB mode:
//
// Dolphin will behave like the GameCube and encode the EFB to
// a portion of GameCube RAM. The emulated video interface will decode the data
// for output to the screen.
//
// Advantages: Behaves exactly like the GameCube.
// Disadvantages: Resolution will be limited.
//
// Virtual XFB mode:
//
// When a request is made to copy the EFB to an XFB, Dolphin
// will remember the RAM location and size of the XFB in a Virtual XFB list.
// The video interface will look up the XFB in the list and use the enhanced
// data stored there, if available.
//
// Advantages: Enables high resolution graphics, better than real hardware.
// Disadvantages: If the GameCube CPU writes directly to the XFB (which is
// possible but uncommon), the Virtual XFB will not capture this information.

// There may be multiple XFBs in GameCube RAM. This is the maximum number to
// virtualize.

class FramebufferManager : public FramebufferManagerBase
{
public:
  FramebufferManager(int target_width, int target_height);
  ~FramebufferManager();

  static D3DTexture2D*& GetEFBColorTexture();
  static D3DTexture2D*& GetEFBColorReadTexture();
  static ID3D11Texture2D*& GetEFBColorStagingBuffer();

  static D3DTexture2D*& GetEFBDepthTexture();
  static D3DTexture2D*& GetEFBDepthReadTexture();
  static ID3D11Texture2D*& GetEFBDepthStagingBuffer();

  static D3DTexture2D*& GetResolvedEFBColorTexture();
  static D3DTexture2D*& GetResolvedEFBDepthTexture();

  static D3DTexture2D*& GetEFBColorTempTexture() { return m_efb.color_temp_tex; }
  static void SwapReinterpretTexture();
  static void SetIntegerEFBRenderTarget(bool enabled);
  static void BindEFBRenderTarget(bool bind_depth = true);

private:
  static struct Efb
  {
    D3DTexture2D* color_tex;
    ID3D11RenderTargetView* color_int_rtv;
    ID3D11Texture2D* color_staging_buf;
    D3DTexture2D* color_read_texture;

    D3DTexture2D* depth_tex;
    ID3D11Texture2D* depth_staging_buf;
    D3DTexture2D* depth_read_texture;

    D3DTexture2D* color_temp_tex;
    ID3D11RenderTargetView* color_temp_int_rtv;

    D3DTexture2D* resolved_color_tex;
    D3DTexture2D* resolved_depth_tex;

    int slices;
  } m_efb;

  static unsigned int m_target_width;
  static unsigned int m_target_height;
};

}  // namespace DX11