// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include "Common.h" #include "Statistics.h" #include "PixelShaderManager.h" #include "VideoCommon.h" #include "VideoConfig.h" #include "RenderBase.h" static int s_nColorsChanged[2]; // 0 - regular colors, 1 - k colors static int s_nIndTexMtxChanged; static bool s_bAlphaChanged; static bool s_bZBiasChanged; static bool s_bZTextureTypeChanged; static bool s_bDepthRangeChanged; static bool s_bFogColorChanged; static bool s_bFogParamChanged; static bool s_bFogRangeAdjustChanged; static int nLightsChanged[2]; // min,max static float lastRGBAfull[2][4][4]; static u8 s_nTexDimsChanged; static u8 s_nIndTexScaleChanged; static u32 lastAlpha; static u32 lastTexDims[8]; // width | height << 16 | wrap_s << 28 | wrap_t << 30 static u32 lastZBias; static int nMaterialsChanged; inline void SetPSConstant4f(unsigned int const_number, float f1, float f2, float f3, float f4) { g_renderer->SetPSConstant4f(const_number, f1, f2, f3, f4); } inline void SetPSConstant4fv(unsigned int const_number, const float *f) { g_renderer->SetPSConstant4fv(const_number, f); } inline void SetMultiPSConstant4fv(unsigned int const_number, unsigned int count, const float *f) { g_renderer->SetMultiPSConstant4fv(const_number, count, f); } void PixelShaderManager::Init() { lastAlpha = 0; memset(lastTexDims, 0, sizeof(lastTexDims)); lastZBias = 0; memset(lastRGBAfull, 0, sizeof(lastRGBAfull)); Dirty(); } void PixelShaderManager::Dirty() { s_nColorsChanged[0] = s_nColorsChanged[1] = 15; s_nTexDimsChanged = 0xFF; s_nIndTexScaleChanged = 0xFF; s_nIndTexMtxChanged = 15; s_bAlphaChanged = s_bZBiasChanged = s_bZTextureTypeChanged = s_bDepthRangeChanged = true; s_bFogRangeAdjustChanged = s_bFogColorChanged = s_bFogParamChanged = true; nLightsChanged[0] = 0; nLightsChanged[1] = 0x80; nMaterialsChanged = 15; } void PixelShaderManager::Shutdown() { } void PixelShaderManager::SetConstants() { if (g_ActiveConfig.bUseGLSL && !g_ActiveConfig.backend_info.bSupportsGLSLUBO) Dirty(); for (int i = 0; i < 2; ++i) { if (s_nColorsChanged[i]) { int baseind = i ? C_KCOLORS : C_COLORS; for (int j = 0; j < 4; ++j) { if (s_nColorsChanged[i] & (1 << j)) SetPSConstant4fv(baseind+j, &lastRGBAfull[i][j][0]); } s_nColorsChanged[i] = 0; } } if (s_nTexDimsChanged) { for (int i = 0; i < 8; ++i) { if (s_nTexDimsChanged & (1<>8)&0xff)/255.0f, 0, ((lastAlpha>>16)&0xff)/255.0f); s_bAlphaChanged = false; } if (s_bZTextureTypeChanged) { float ftemp[4]; switch (bpmem.ztex2.type) { case 0: // 8 bits ftemp[0] = 0; ftemp[1] = 0; ftemp[2] = 0; ftemp[3] = 255.0f/16777215.0f; break; case 1: // 16 bits ftemp[0] = 255.0f/16777215.0f; ftemp[1] = 0; ftemp[2] = 0; ftemp[3] = 65280.0f/16777215.0f; break; case 2: // 24 bits ftemp[0] = 16711680.0f/16777215.0f; ftemp[1] = 65280.0f/16777215.0f; ftemp[2] = 255.0f/16777215.0f; ftemp[3] = 0; break; } SetPSConstant4fv(C_ZBIAS, ftemp); s_bZTextureTypeChanged = false; } if (s_bZBiasChanged || s_bDepthRangeChanged) { // reversed gxsetviewport(xorig, yorig, width, height, nearz, farz) // [0] = width/2 // [1] = height/2 // [2] = 16777215 * (farz - nearz) // [3] = xorig + width/2 + 342 // [4] = yorig + height/2 + 342 // [5] = 16777215 * farz //ERROR_LOG("pixel=%x,%x, bias=%x\n", bpmem.zcontrol.pixel_format, bpmem.ztex2.type, lastZBias); SetPSConstant4f(C_ZBIAS+1, xfregs.viewport.farZ / 16777216.0f, xfregs.viewport.zRange / 16777216.0f, 0, (float)(lastZBias)/16777215.0f); s_bZBiasChanged = s_bDepthRangeChanged = false; } // indirect incoming texture scales if (s_nIndTexScaleChanged) { // set as two sets of vec4s, each containing S and T of two ind stages. float f[8]; if (s_nIndTexScaleChanged & 0x03) { for (u32 i = 0; i < 2; ++i) { f[2 * i] = bpmem.texscale[0].getScaleS(i & 1); f[2 * i + 1] = bpmem.texscale[0].getScaleT(i & 1); PRIM_LOG("tex indscale%d: %f %f\n", i, f[2 * i], f[2 * i + 1]); } SetPSConstant4fv(C_INDTEXSCALE, f); } if (s_nIndTexScaleChanged & 0x0c) { for (u32 i = 2; i < 4; ++i) { f[2 * i] = bpmem.texscale[1].getScaleS(i & 1); f[2 * i + 1] = bpmem.texscale[1].getScaleT(i & 1); PRIM_LOG("tex indscale%d: %f %f\n", i, f[2 * i], f[2 * i + 1]); } SetPSConstant4fv(C_INDTEXSCALE+1, &f[4]); } s_nIndTexScaleChanged = 0; } if (s_nIndTexMtxChanged) { for (int i = 0; i < 3; ++i) { if (s_nIndTexMtxChanged & (1 << i)) { int scale = ((u32)bpmem.indmtx[i].col0.s0 << 0) | ((u32)bpmem.indmtx[i].col1.s1 << 2) | ((u32)bpmem.indmtx[i].col2.s2 << 4); float fscale = powf(2.0f, (float)(scale - 17)) / 1024.0f; // xyz - static matrix // TODO w - dynamic matrix scale / 256...... somehow / 4 works better // rev 2972 - now using / 256.... verify that this works SetPSConstant4f(C_INDTEXMTX + 2 * i, bpmem.indmtx[i].col0.ma * fscale, bpmem.indmtx[i].col1.mc * fscale, bpmem.indmtx[i].col2.me * fscale, fscale * 4.0f); SetPSConstant4f(C_INDTEXMTX + 2 * i + 1, bpmem.indmtx[i].col0.mb * fscale, bpmem.indmtx[i].col1.md * fscale, bpmem.indmtx[i].col2.mf * fscale, fscale * 4.0f); PRIM_LOG("indmtx%d: scale=%f, mat=(%f %f %f; %f %f %f)\n", i, 1024.0f*fscale, bpmem.indmtx[i].col0.ma * fscale, bpmem.indmtx[i].col1.mc * fscale, bpmem.indmtx[i].col2.me * fscale, bpmem.indmtx[i].col0.mb * fscale, bpmem.indmtx[i].col1.md * fscale, bpmem.indmtx[i].col2.mf * fscale); } } s_nIndTexMtxChanged = 0; } if (s_bFogColorChanged) { SetPSConstant4f(C_FOG, bpmem.fog.color.r / 255.0f, bpmem.fog.color.g / 255.0f, bpmem.fog.color.b / 255.0f, 0); s_bFogColorChanged = false; } if (s_bFogParamChanged) { if(!g_ActiveConfig.bDisableFog) { //downscale magnitude to 0.24 bits float b = (float)bpmem.fog.b_magnitude / 0xFFFFFF; float b_shf = (float)(1 << bpmem.fog.b_shift); SetPSConstant4f(C_FOG + 1, bpmem.fog.a.GetA(), b, bpmem.fog.c_proj_fsel.GetC(), b_shf); } else SetPSConstant4f(C_FOG + 1, 0.0, 1.0, 0.0, 1.0); s_bFogParamChanged = false; } if (s_bFogRangeAdjustChanged) { if(!g_ActiveConfig.bDisableFog && bpmem.fogRange.Base.Enabled == 1) { //bpmem.fogRange.Base.Center : center of the viewport in x axis. observation: bpmem.fogRange.Base.Center = realcenter + 342; int center = ((u32)bpmem.fogRange.Base.Center) - 342; // normalice center to make calculations easy float ScreenSpaceCenter = center / (2.0f * xfregs.viewport.wd); ScreenSpaceCenter = (ScreenSpaceCenter * 2.0f) - 1.0f; //bpmem.fogRange.K seems to be a table of precalculated coeficients for the adjust factor //observations: bpmem.fogRange.K[0].LO apears to be the lowest value and bpmem.fogRange.K[4].HI the largest // they always seems to be larger than 256 so my teory is : // they are the coeficients from the center to th e border of the screen // so to simplify i use the hi coeficient as K in the shader taking 256 as the scale SetPSConstant4f(C_FOG + 2, ScreenSpaceCenter, (float)Renderer::EFBToScaledX((int)(2.0f * xfregs.viewport.wd)), bpmem.fogRange.K[4].HI / 256.0f,0.0f); } else SetPSConstant4f(C_FOG + 2, 0.0f, 1.0f, 1.0f, 0.0f); // Need to update these values for older hardware that fails to divide by zero in shaders. s_bFogRangeAdjustChanged = false; } if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting) // config check added because the code in here was crashing for me inside SetPSConstant4f { if (nLightsChanged[0] >= 0) { // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0] / 0x10; int iend = (nLightsChanged[1] + 15) / 0x10; const float* xfmemptr = (const float*)&xfmem[0x10 * istart + XFMEM_LIGHTS]; for (int i = istart; i < iend; ++i) { u32 color = *(const u32*)(xfmemptr + 3); float NormalizationCoef = 1 / 255.0f; SetPSConstant4f(C_PLIGHTS + 5 * i, ((color >> 24) & 0xFF) * NormalizationCoef, ((color >> 16) & 0xFF) * NormalizationCoef, ((color >> 8) & 0xFF) * NormalizationCoef, ((color) & 0xFF) * NormalizationCoef); xfmemptr += 4; for (int j = 0; j < 4; ++j, xfmemptr += 3) { if (j == 1 && fabs(xfmemptr[0]) < 0.00001f && fabs(xfmemptr[1]) < 0.00001f && fabs(xfmemptr[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! SetPSConstant4f(C_PLIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0); } else SetPSConstant4fv(C_PLIGHTS+5*i+j+1, xfmemptr); } } nLightsChanged[0] = nLightsChanged[1] = -1; } if (nMaterialsChanged) { float GC_ALIGNED16(material[4]); float NormalizationCoef = 1 / 255.0f; for (int i = 0; i < 4; ++i) { if (nMaterialsChanged & (1 << i)) { u32 data = *(xfregs.ambColor + i); material[0] = ((data >> 24) & 0xFF) * NormalizationCoef; material[1] = ((data >> 16) & 0xFF) * NormalizationCoef; material[2] = ((data >> 8) & 0xFF) * NormalizationCoef; material[3] = ( data & 0xFF) * NormalizationCoef; SetPSConstant4fv(C_PMATERIALS + i, material); } } nMaterialsChanged = 0; } } } void PixelShaderManager::SetPSTextureDims(int texid) { // texdims.xy are reciprocals of the real texture dimensions // texdims.zw are the scaled dimensions float fdims[4]; TCoordInfo& tc = bpmem.texcoords[texid]; fdims[0] = 1.0f / (float)(lastTexDims[texid] & 0xffff); fdims[1] = 1.0f / (float)((lastTexDims[texid] >> 16) & 0xfff); fdims[2] = (float)(tc.s.scale_minus_1 + 1); fdims[3] = (float)(tc.t.scale_minus_1 + 1); PRIM_LOG("texdims%d: %f %f %f %f\n", texid, fdims[0], fdims[1], fdims[2], fdims[3]); SetPSConstant4fv(C_TEXDIMS + texid, fdims); } // This one is high in profiles (0.5%). TODO: Move conversion out, only store the raw color value // and update it when the shader constant is set, only. void PixelShaderManager::SetColorChanged(int type, int num, bool high) { float *pf = &lastRGBAfull[type][num][0]; if (!high) { int r = bpmem.tevregs[num].low.a; int a = bpmem.tevregs[num].low.b; pf[0] = (float)r * (1.0f / 255.0f); pf[3] = (float)a * (1.0f / 255.0f); } else { int b = bpmem.tevregs[num].high.a; int g = bpmem.tevregs[num].high.b; pf[1] = (float)g * (1.0f / 255.0f); pf[2] = (float)b * (1.0f / 255.0f); } s_nColorsChanged[type] |= 1 << num; PRIM_LOG("pixel %scolor%d: %f %f %f %f\n", type?"k":"", num, pf[0], pf[1], pf[2], pf[3]); } void PixelShaderManager::SetAlpha(const AlphaFunc& alpha) { if ((alpha.hex & 0xffff) != lastAlpha) { lastAlpha = (lastAlpha & ~0xffff) | (alpha.hex & 0xffff); s_bAlphaChanged = true; } } void PixelShaderManager::SetDestAlpha(const ConstantAlpha& alpha) { if (alpha.alpha != (lastAlpha >> 16)) { lastAlpha = (lastAlpha & ~0xff0000) | ((alpha.hex & 0xff) << 16); s_bAlphaChanged = true; } } void PixelShaderManager::SetTexDims(int texmapid, u32 width, u32 height, u32 wraps, u32 wrapt) { u32 wh = width | (height << 16) | (wraps << 28) | (wrapt << 30); if (lastTexDims[texmapid] != wh) { lastTexDims[texmapid] = wh; s_nTexDimsChanged |= 1 << texmapid; } } void PixelShaderManager::SetZTextureBias(u32 bias) { if (lastZBias != bias) { s_bZBiasChanged = true; lastZBias = bias; } } void PixelShaderManager::SetViewportChanged() { s_bDepthRangeChanged = true; } void PixelShaderManager::SetIndTexScaleChanged(u8 stagemask) { s_nIndTexScaleChanged |= stagemask; } void PixelShaderManager::SetIndMatrixChanged(int matrixidx) { s_nIndTexMtxChanged |= 1 << matrixidx; } void PixelShaderManager::SetZTextureTypeChanged() { s_bZTextureTypeChanged = true; } void PixelShaderManager::SetTexCoordChanged(u8 texmapid) { s_nTexDimsChanged |= 1 << texmapid; } void PixelShaderManager::SetFogColorChanged() { s_bFogColorChanged = true; } void PixelShaderManager::SetFogParamChanged() { s_bFogParamChanged = true; } void PixelShaderManager::SetFogRangeAdjustChanged() { s_bFogRangeAdjustChanged = true; } void PixelShaderManager::SetColorMatrix(const float* pmatrix) { SetMultiPSConstant4fv(C_COLORMATRIX,7,pmatrix); s_nColorsChanged[0] = s_nColorsChanged[1] = 15; } void PixelShaderManager::InvalidateXFRange(int start, int end) { if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS; if (nLightsChanged[0] == -1 ) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void PixelShaderManager::SetMaterialColorChanged(int index) { nMaterialsChanged |= (1 << index); } void PixelShaderManager::DoState(PointerWrap &p) { p.Do(lastRGBAfull); p.Do(lastAlpha); p.Do(lastTexDims); p.Do(lastZBias); if (p.GetMode() == PointerWrap::MODE_READ) { Dirty(); } }