// Copyright 2018 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "InputCommon/ControllerEmu/StickGate.h" #include #include "Common/Common.h" #include "Common/MathUtil.h" #include "Common/Matrix.h" #include "Common/StringUtil.h" #include "InputCommon/ControllerEmu/Control/Control.h" #include "InputCommon/ControllerEmu/Setting/NumericSetting.h" namespace { constexpr auto CALIBRATION_CONFIG_NAME = "Calibration"; constexpr auto CALIBRATION_DEFAULT_VALUE = 1.0; constexpr auto CALIBRATION_CONFIG_SCALE = 100; // Calculate distance to intersection of a ray with a line defined by two points. double GetRayLineIntersection(Common::DVec2 ray, Common::DVec2 point1, Common::DVec2 point2) { const auto diff = point2 - point1; const auto dot = diff.Dot({-ray.y, ray.x}); if (std::abs(dot) < 0.00001) { // Handle situation where both points are on top of eachother. // This could occur if the user configures a single calibration value // or when updating calibration. return point1.Length(); } return diff.Cross(-point1) / dot; } Common::DVec2 GetPointFromAngleAndLength(double angle, double length) { return Common::DVec2{std::cos(angle), std::sin(angle)} * length; } } // namespace namespace ControllerEmu { constexpr int ReshapableInput::CALIBRATION_SAMPLE_COUNT; std::optional StickGate::GetIdealCalibrationSampleCount() const { return {}; } OctagonStickGate::OctagonStickGate(ControlState radius) : m_radius(radius) { } ControlState OctagonStickGate::GetRadiusAtAngle(double angle) const { constexpr int sides = 8; constexpr double sum_int_angles = (sides - 2) * MathUtil::PI; constexpr double half_int_angle = sum_int_angles / sides / 2; angle = std::fmod(angle, MathUtil::TAU / sides); // Solve ASA triangle using The Law of Sines: return m_radius / std::sin(MathUtil::PI - angle - half_int_angle) * std::sin(half_int_angle); } std::optional OctagonStickGate::GetIdealCalibrationSampleCount() const { return 8; } RoundStickGate::RoundStickGate(ControlState radius) : m_radius(radius) { } ControlState RoundStickGate::GetRadiusAtAngle(double) const { return m_radius; } SquareStickGate::SquareStickGate(ControlState half_width) : m_half_width(half_width) { } ControlState SquareStickGate::GetRadiusAtAngle(double angle) const { constexpr double section_angle = MathUtil::TAU / 4; return m_half_width / std::cos(std::fmod(angle + section_angle / 2, section_angle) - section_angle / 2); } std::optional SquareStickGate::GetIdealCalibrationSampleCount() const { // Because angle:0 points to the right we must use 8 samples for our square. return 8; } ReshapableInput::ReshapableInput(std::string name, std::string ui_name, GroupType type) : ControlGroup(std::move(name), std::move(ui_name), type) { numeric_settings.emplace_back(std::make_unique(_trans("Dead Zone"), 0, 0, 50)); } ControlState ReshapableInput::GetDeadzoneRadiusAtAngle(double angle) const { // FYI: deadzone is scaled by input radius which allows the shape to match. return GetInputRadiusAtAngle(angle) * numeric_settings[SETTING_DEADZONE]->GetValue(); } ControlState ReshapableInput::GetInputRadiusAtAngle(double angle) const { // Handle the "default" state. if (m_calibration.empty()) { return GetDefaultInputRadiusAtAngle(angle); } return GetCalibrationDataRadiusAtAngle(m_calibration, angle); } ControlState ReshapableInput::GetCalibrationDataRadiusAtAngle(const CalibrationData& data, double angle) { const auto sample_pos = angle / MathUtil::TAU * data.size(); // Interpolate the radius between 2 calibration samples. const u32 sample1_index = u32(sample_pos) % data.size(); const u32 sample2_index = (sample1_index + 1) % data.size(); const double sample1_angle = sample1_index * MathUtil::TAU / data.size(); const double sample2_angle = sample2_index * MathUtil::TAU / data.size(); return GetRayLineIntersection(GetPointFromAngleAndLength(angle, 1.0), GetPointFromAngleAndLength(sample1_angle, data[sample1_index]), GetPointFromAngleAndLength(sample2_angle, data[sample2_index])); } ControlState ReshapableInput::GetDefaultInputRadiusAtAngle(double angle) const { // This will normally be the same as the gate radius. // Unless a sub-class is doing weird things with the gate radius (e.g. Tilt) return GetGateRadiusAtAngle(angle); } void ReshapableInput::SetCalibrationToDefault() { m_calibration.clear(); } void ReshapableInput::SetCalibrationFromGate(const StickGate& gate) { m_calibration.resize(gate.GetIdealCalibrationSampleCount().value_or(CALIBRATION_SAMPLE_COUNT)); u32 i = 0; for (auto& val : m_calibration) val = gate.GetRadiusAtAngle(MathUtil::TAU * i++ / m_calibration.size()); } void ReshapableInput::UpdateCalibrationData(CalibrationData& data, Common::DVec2 point) { const auto angle_scale = MathUtil::TAU / data.size(); const u32 calibration_index = std::lround((std::atan2(point.y, point.x) + MathUtil::TAU) / angle_scale) % data.size(); const double calibration_angle = calibration_index * angle_scale; auto& calibration_sample = data[calibration_index]; // Update closest sample from provided x,y. calibration_sample = std::max(calibration_sample, point.Length()); // Here we update all other samples in our calibration vector to maintain // a convex polygon containing our new calibration point. // This is required to properly fill in angles that cannot be gotten. // (e.g. Keyboard input only has 8 possible angles) // Note: Loop assumes an even sample count, which should not be a problem. for (auto sample_offset = u32(data.size() / 2 - 1); sample_offset > 1; --sample_offset) { const auto update_at_offset = [&](u32 offset1, u32 offset2) { const u32 sample1_index = (calibration_index + offset1) % data.size(); const double sample1_angle = sample1_index * angle_scale; auto& sample1 = data[sample1_index]; const u32 sample2_index = (calibration_index + offset2) % data.size(); const double sample2_angle = sample2_index * angle_scale; auto& sample2 = data[sample2_index]; const double intersection = GetRayLineIntersection(GetPointFromAngleAndLength(sample2_angle, 1.0), GetPointFromAngleAndLength(sample1_angle, sample1), GetPointFromAngleAndLength(calibration_angle, calibration_sample)); sample2 = std::max(sample2, intersection); }; update_at_offset(sample_offset, sample_offset - 1); update_at_offset(u32(data.size() - sample_offset), u32(data.size() - sample_offset + 1)); } } const ReshapableInput::CalibrationData& ReshapableInput::GetCalibrationData() const { return m_calibration; } void ReshapableInput::SetCalibrationData(CalibrationData data) { m_calibration = std::move(data); } void ReshapableInput::LoadConfig(IniFile::Section* section, const std::string& default_device, const std::string& base_name) { ControlGroup::LoadConfig(section, default_device, base_name); const std::string group(base_name + name + '/'); std::string load_str; section->Get(group + CALIBRATION_CONFIG_NAME, &load_str, ""); const auto load_data = SplitString(load_str, ' '); m_calibration.assign(load_data.size(), CALIBRATION_DEFAULT_VALUE); auto it = load_data.begin(); for (auto& sample : m_calibration) { if (TryParse(*(it++), &sample)) sample /= CALIBRATION_CONFIG_SCALE; } } void ReshapableInput::SaveConfig(IniFile::Section* section, const std::string& default_device, const std::string& base_name) { ControlGroup::SaveConfig(section, default_device, base_name); const std::string group(base_name + name + '/'); std::vector save_data(m_calibration.size()); std::transform( m_calibration.begin(), m_calibration.end(), save_data.begin(), [](ControlState val) { return StringFromFormat("%.2f", val * CALIBRATION_CONFIG_SCALE); }); section->Set(group + CALIBRATION_CONFIG_NAME, JoinStrings(save_data, " "), ""); } ReshapableInput::ReshapeData ReshapableInput::Reshape(ControlState x, ControlState y, ControlState modifier) { // TODO: make the AtAngle functions work with negative angles: const ControlState angle = std::atan2(y, x) + MathUtil::TAU; const ControlState gate_max_dist = GetGateRadiusAtAngle(angle); const ControlState input_max_dist = GetInputRadiusAtAngle(angle); // If input radius (from calibration) is zero apply no scaling to prevent division by zero. const ControlState max_dist = input_max_dist ? input_max_dist : gate_max_dist; ControlState dist = Common::DVec2{x, y}.Length() / max_dist; // If the modifier is pressed, scale the distance by the modifier's value. // This is affected by the modifier's "range" setting which defaults to 50%. if (modifier) { // TODO: Modifier's range setting gets reset to 100% when the clear button is clicked. // This causes the modifier to not behave how a user might suspect. // Retaining the old scale-by-50% behavior until range is fixed to clear to 50%. dist *= 0.5; // dist *= modifier; } // Apply deadzone as a percentage of the user-defined calibration shape/size: const ControlState deadzone = numeric_settings[SETTING_DEADZONE]->GetValue(); dist = std::max(0.0, dist - deadzone) / (1.0 - deadzone); // Scale to the gate shape/radius: dist *= gate_max_dist; return {MathUtil::Clamp(std::cos(angle) * dist, -1.0, 1.0), MathUtil::Clamp(std::sin(angle) * dist, -1.0, 1.0)}; } } // namespace ControllerEmu