// Copyright 2003 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Core/PowerPC/MMU.h" #include #include #include #include #include "Common/Assert.h" #include "Common/BitUtils.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Core/ConfigManager.h" #include "Core/HW/CPU.h" #include "Core/HW/GPFifo.h" #include "Core/HW/MMIO.h" #include "Core/HW/Memmap.h" #include "Core/HW/ProcessorInterface.h" #include "Core/PowerPC/JitInterface.h" #include "Core/PowerPC/PowerPC.h" #include "VideoCommon/VideoBackendBase.h" #ifdef USE_GDBSTUB #include "Core/PowerPC/GDBStub.h" #endif namespace PowerPC { // EFB RE /* GXPeekZ 80322de8: rlwinm r0, r3, 2, 14, 29 (0003fffc) a = x << 2 & 0x3fffc 80322dec: oris r0, r0, 0xC800 a |= 0xc8000000 80322df0: rlwinm r3, r0, 0, 20, 9 (ffc00fff) x = a & 0xffc00fff 80322df4: rlwinm r0, r4, 12, 4, 19 (0ffff000) a = (y << 12) & 0x0ffff000; 80322df8: or r0, r3, r0 a |= x; 80322dfc: rlwinm r0, r0, 0, 10, 7 (ff3fffff) a &= 0xff3fffff 80322e00: oris r3, r0, 0x0040 x = a | 0x00400000 80322e04: lwz r0, 0 (r3) r0 = *r3 80322e08: stw r0, 0 (r5) z = 80322e0c: blr */ // ================================= // From Memmap.cpp // ---------------- // Overloaded byteswap functions, for use within the templated functions below. inline u8 bswap(u8 val) { return val; } inline s8 bswap(s8 val) { return val; } inline u16 bswap(u16 val) { return Common::swap16(val); } inline s16 bswap(s16 val) { return Common::swap16(val); } inline u32 bswap(u32 val) { return Common::swap32(val); } inline u64 bswap(u64 val) { return Common::swap64(val); } // ================= enum class XCheckTLBFlag { NoException, Read, Write, Opcode, OpcodeNoException }; static bool IsOpcodeFlag(XCheckTLBFlag flag) { return flag == XCheckTLBFlag::Opcode || flag == XCheckTLBFlag::OpcodeNoException; } static bool IsNoExceptionFlag(XCheckTLBFlag flag) { return flag == XCheckTLBFlag::NoException || flag == XCheckTLBFlag::OpcodeNoException; } enum class TranslateAddressResultEnum : u8 { BAT_TRANSLATED, PAGE_TABLE_TRANSLATED, DIRECT_STORE_SEGMENT, PAGE_FAULT, }; struct TranslateAddressResult { u32 address; TranslateAddressResultEnum result; bool wi; // Set to true if the view of memory is either write-through or cache-inhibited TranslateAddressResult(TranslateAddressResultEnum result_, u32 address_, bool wi_ = false) : address(address_), result(result_), wi(wi_) { } bool Success() const { return result <= TranslateAddressResultEnum::PAGE_TABLE_TRANSLATED; } }; template static TranslateAddressResult TranslateAddress(u32 address); // Nasty but necessary. Super Mario Galaxy pointer relies on this stuff. static u32 EFB_Read(const u32 addr) { u32 var = 0; // Convert address to coordinates. It's possible that this should be done // differently depending on color depth, especially regarding PeekColor. const u32 x = (addr & 0xfff) >> 2; const u32 y = (addr >> 12) & 0x3ff; if (addr & 0x00800000) { ERROR_LOG_FMT(MEMMAP, "Unimplemented Z+Color EFB read @ {:#010x}", addr); } else if (addr & 0x00400000) { var = g_video_backend->Video_AccessEFB(EFBAccessType::PeekZ, x, y, 0); DEBUG_LOG_FMT(MEMMAP, "EFB Z Read @ {}, {}\t= {:#010x}", x, y, var); } else { var = g_video_backend->Video_AccessEFB(EFBAccessType::PeekColor, x, y, 0); DEBUG_LOG_FMT(MEMMAP, "EFB Color Read @ {}, {}\t= {:#010x}", x, y, var); } return var; } static void EFB_Write(u32 data, u32 addr) { const u32 x = (addr & 0xfff) >> 2; const u32 y = (addr >> 12) & 0x3ff; if (addr & 0x00800000) { // It's possible to do a z-tested write to EFB by writing a 64bit value to this address range. // Not much is known, but let's at least get some loging. ERROR_LOG_FMT(MEMMAP, "Unimplemented Z+Color EFB write. {:08x} @ {:#010x}", data, addr); } else if (addr & 0x00400000) { g_video_backend->Video_AccessEFB(EFBAccessType::PokeZ, x, y, data); DEBUG_LOG_FMT(MEMMAP, "EFB Z Write {:08x} @ {}, {}", data, x, y); } else { g_video_backend->Video_AccessEFB(EFBAccessType::PokeColor, x, y, data); DEBUG_LOG_FMT(MEMMAP, "EFB Color Write {:08x} @ {}, {}", data, x, y); } } BatTable ibat_table; BatTable dbat_table; static void GenerateDSIException(u32 effective_address, bool write); template static T ReadFromHardware(u32 em_address) { if (!never_translate && MSR.DR) { auto translated_addr = TranslateAddress(em_address); if (!translated_addr.Success()) { if (flag == XCheckTLBFlag::Read) GenerateDSIException(em_address, false); return 0; } if ((em_address & (HW_PAGE_SIZE - 1)) > HW_PAGE_SIZE - sizeof(T)) { // This could be unaligned down to the byte level... hopefully this is rare, so doing it this // way isn't too terrible. // TODO: floats on non-word-aligned boundaries should technically cause alignment exceptions. // Note that "word" means 32-bit, so paired singles or doubles might still be 32-bit aligned! u32 em_address_next_page = (em_address + sizeof(T) - 1) & ~(HW_PAGE_SIZE - 1); auto addr_next_page = TranslateAddress(em_address_next_page); if (!addr_next_page.Success()) { if (flag == XCheckTLBFlag::Read) GenerateDSIException(em_address_next_page, false); return 0; } T var = 0; u32 addr_translated = translated_addr.address; for (u32 addr = em_address; addr < em_address + sizeof(T); addr++, addr_translated++) { if (addr == em_address_next_page) addr_translated = addr_next_page.address; var = (var << 8) | ReadFromHardware(addr_translated); } return var; } em_address = translated_addr.address; } // TODO: Make sure these are safe for unaligned addresses. if (Memory::m_pRAM && (em_address & 0xF8000000) == 0x00000000) { // Handle RAM; the masking intentionally discards bits (essentially creating // mirrors of memory). // TODO: Only the first GetRamSizeReal() is supposed to be backed by actual memory. T value; std::memcpy(&value, &Memory::m_pRAM[em_address & Memory::GetRamMask()], sizeof(T)); return bswap(value); } if (Memory::m_pEXRAM && (em_address >> 28) == 0x1 && (em_address & 0x0FFFFFFF) < Memory::GetExRamSizeReal()) { T value; std::memcpy(&value, &Memory::m_pEXRAM[em_address & 0x0FFFFFFF], sizeof(T)); return bswap(value); } // Locked L1 technically doesn't have a fixed address, but games all use 0xE0000000. if (Memory::m_pL1Cache && (em_address >> 28) == 0xE && (em_address < (0xE0000000 + Memory::GetL1CacheSize()))) { T value; std::memcpy(&value, &Memory::m_pL1Cache[em_address & 0x0FFFFFFF], sizeof(T)); return bswap(value); } // In Fake-VMEM mode, we need to map the memory somewhere into // physical memory for BAT translation to work; we currently use // [0x7E000000, 0x80000000). if (Memory::m_pFakeVMEM && ((em_address & 0xFE000000) == 0x7E000000)) { T value; std::memcpy(&value, &Memory::m_pFakeVMEM[em_address & Memory::GetFakeVMemMask()], sizeof(T)); return bswap(value); } if (flag == XCheckTLBFlag::Read && (em_address & 0xF8000000) == 0x08000000) { if (em_address < 0x0c000000) return EFB_Read(em_address); else return (T)Memory::mmio_mapping->Read::type>(em_address); } PanicAlertFmt("Unable to resolve read address {:x} PC {:x}", em_address, PC); return 0; } template static void WriteToHardware(u32 em_address, const u32 data, const u32 size) { DEBUG_ASSERT(size <= 4); const u32 em_address_start_page = em_address & ~(HW_PAGE_SIZE - 1); const u32 em_address_end_page = (em_address + size - 1) & ~(HW_PAGE_SIZE - 1); if (em_address_start_page != em_address_end_page) { // The write crosses a page boundary. Break it up into two writes. // TODO: floats on non-word-aligned boundaries should technically cause alignment exceptions. // Note that "word" means 32-bit, so paired singles or doubles might still be 32-bit aligned! const u32 first_half_size = em_address_end_page - em_address; const u32 second_half_size = size - first_half_size; WriteToHardware( em_address, Common::RotateRight(data, second_half_size * 8), first_half_size); WriteToHardware(em_address_end_page, data, second_half_size); return; } bool wi = false; if (!never_translate && MSR.DR) { auto translated_addr = TranslateAddress(em_address); if (!translated_addr.Success()) { if (flag == XCheckTLBFlag::Write) GenerateDSIException(em_address, true); return; } em_address = translated_addr.address; wi = translated_addr.wi; } // Check for a gather pipe write. // Note that we must mask the address to correctly emulate certain games; // Pac-Man World 3 in particular is affected by this. if (flag == XCheckTLBFlag::Write && (em_address & 0xFFFFF000) == 0x0C008000) { switch (size) { case 1: GPFifo::Write8(static_cast(data)); return; case 2: GPFifo::Write16(static_cast(data)); return; case 4: GPFifo::Write32(data); return; default: // Some kind of misaligned write. TODO: Does this match how the actual hardware handles it? for (size_t i = size * 8; i > 0;) { i -= 8; GPFifo::Write8(static_cast(data >> i)); } return; } } if (flag == XCheckTLBFlag::Write && (em_address & 0xF8000000) == 0x08000000) { if (em_address < 0x0c000000) { EFB_Write(data, em_address); return; } switch (size) { case 1: Memory::mmio_mapping->Write(em_address, static_cast(data)); return; case 2: Memory::mmio_mapping->Write(em_address, static_cast(data)); return; case 4: Memory::mmio_mapping->Write(em_address, data); return; default: // Some kind of misaligned write. TODO: Does this match how the actual hardware handles it? for (size_t i = size * 8; i > 0; em_address++) { i -= 8; Memory::mmio_mapping->Write(em_address, static_cast(data >> i)); } return; } } const u32 swapped_data = Common::swap32(Common::RotateRight(data, size * 8)); // Locked L1 technically doesn't have a fixed address, but games all use 0xE0000000. if (Memory::m_pL1Cache && (em_address >> 28 == 0xE) && (em_address < (0xE0000000 + Memory::GetL1CacheSize()))) { std::memcpy(&Memory::m_pL1Cache[em_address & 0x0FFFFFFF], &swapped_data, size); return; } if (wi && (size < 4 || (em_address & 0x3))) { // When a write to memory is performed in hardware, 64 bits of data are sent to the memory // controller along with a mask. This mask is encoded using just two bits of data - one for // the upper 32 bits and one for the lower 32 bits - which leads to some odd data duplication // behavior for write-through/cache-inhibited writes with a start address or end address that // isn't 32-bit aligned. See https://bugs.dolphin-emu.org/issues/12565 for details. // TODO: This interrupt is supposed to have associated cause and address registers // TODO: This should trigger the hwtest's interrupt handling, but it does not seem to // (https://github.com/dolphin-emu/hwtests/pull/42) ProcessorInterface::SetInterrupt(ProcessorInterface::INT_CAUSE_PI); const u32 rotated_data = Common::RotateRight(data, ((em_address & 0x3) + size) * 8); for (u32 addr = em_address & ~0x7; addr < em_address + size; addr += 8) { WriteToHardware(addr, rotated_data, 4); WriteToHardware(addr + 4, rotated_data, 4); } return; } if (Memory::m_pRAM && (em_address & 0xF8000000) == 0x00000000) { // Handle RAM; the masking intentionally discards bits (essentially creating // mirrors of memory). std::memcpy(&Memory::m_pRAM[em_address & Memory::GetRamMask()], &swapped_data, size); return; } if (Memory::m_pEXRAM && (em_address >> 28) == 0x1 && (em_address & 0x0FFFFFFF) < Memory::GetExRamSizeReal()) { std::memcpy(&Memory::m_pEXRAM[em_address & 0x0FFFFFFF], &swapped_data, size); return; } // In Fake-VMEM mode, we need to map the memory somewhere into // physical memory for BAT translation to work; we currently use // [0x7E000000, 0x80000000). if (Memory::m_pFakeVMEM && ((em_address & 0xFE000000) == 0x7E000000)) { std::memcpy(&Memory::m_pFakeVMEM[em_address & Memory::GetFakeVMemMask()], &swapped_data, size); return; } PanicAlertFmt("Unable to resolve write address {:x} PC {:x}", em_address, PC); } // ===================== // ================================= /* These functions are primarily called by the Interpreter functions and are routed to the correct location through ReadFromHardware and WriteToHardware */ // ---------------- static void GenerateISIException(u32 effective_address); u32 Read_Opcode(u32 address) { TryReadInstResult result = TryReadInstruction(address); if (!result.valid) { GenerateISIException(address); return 0; } return result.hex; } TryReadInstResult TryReadInstruction(u32 address) { bool from_bat = true; if (MSR.IR) { auto tlb_addr = TranslateAddress(address); if (!tlb_addr.Success()) { return TryReadInstResult{false, false, 0, 0}; } else { address = tlb_addr.address; from_bat = tlb_addr.result == TranslateAddressResultEnum::BAT_TRANSLATED; } } u32 hex; // TODO: Refactor this. This icache implementation is totally wrong if used with the fake vmem. if (Memory::m_pFakeVMEM && ((address & 0xFE000000) == 0x7E000000)) { hex = Common::swap32(&Memory::m_pFakeVMEM[address & Memory::GetFakeVMemMask()]); } else { hex = PowerPC::ppcState.iCache.ReadInstruction(address); } return TryReadInstResult{true, from_bat, hex, address}; } u32 HostRead_Instruction(const u32 address) { return ReadFromHardware(address); } TryReadResult HostTryReadInstruction(const u32 address, RequestedAddressSpace space) { if (!HostIsInstructionRAMAddress(address, space)) return TryReadResult(); switch (space) { case RequestedAddressSpace::Effective: { const u32 value = ReadFromHardware(address); return TryReadResult(!!MSR.DR, value); } case RequestedAddressSpace::Physical: { const u32 value = ReadFromHardware(address); return TryReadResult(false, value); } case RequestedAddressSpace::Virtual: { if (!MSR.DR) return TryReadResult(); const u32 value = ReadFromHardware(address); return TryReadResult(true, value); } } assert(0); return TryReadResult(); } static void Memcheck(u32 address, u64 var, bool write, size_t size) { if (!memchecks.HasAny()) return; TMemCheck* mc = memchecks.GetMemCheck(address, size); if (mc == nullptr) return; if (CPU::IsStepping()) { // Disable when stepping so that resume works. return; } mc->num_hits++; const bool pause = mc->Action(&debug_interface, var, address, write, size, PC); if (!pause) return; CPU::Break(); // Fake a DSI so that all the code that tests for it in order to skip // the rest of the instruction will apply. (This means that // watchpoints will stop the emulator before the offending load/store, // not after like GDB does, but that's better anyway. Just need to // make sure resuming after that works.) // It doesn't matter if ReadFromHardware triggers its own DSI because // we'll take it after resuming. ppcState.Exceptions |= EXCEPTION_DSI | EXCEPTION_FAKE_MEMCHECK_HIT; } u8 Read_U8(const u32 address) { u8 var = ReadFromHardware(address); Memcheck(address, var, false, 1); return var; } u16 Read_U16(const u32 address) { u16 var = ReadFromHardware(address); Memcheck(address, var, false, 2); return var; } u32 Read_U32(const u32 address) { u32 var = ReadFromHardware(address); Memcheck(address, var, false, 4); return var; } u64 Read_U64(const u32 address) { u64 var = ReadFromHardware(address); Memcheck(address, var, false, 8); return var; } double Read_F64(const u32 address) { const u64 integral = Read_U64(address); return Common::BitCast(integral); } float Read_F32(const u32 address) { const u32 integral = Read_U32(address); return Common::BitCast(integral); } template static TryReadResult HostTryReadUX(const u32 address, RequestedAddressSpace space) { if (!HostIsRAMAddress(address, space)) return TryReadResult(); switch (space) { case RequestedAddressSpace::Effective: { T value = ReadFromHardware(address); return TryReadResult(!!MSR.DR, std::move(value)); } case RequestedAddressSpace::Physical: { T value = ReadFromHardware(address); return TryReadResult(false, std::move(value)); } case RequestedAddressSpace::Virtual: { if (!MSR.DR) return TryReadResult(); T value = ReadFromHardware(address); return TryReadResult(true, std::move(value)); } } assert(0); return TryReadResult(); } TryReadResult HostTryReadU8(u32 address, RequestedAddressSpace space) { return HostTryReadUX(address, space); } TryReadResult HostTryReadU16(u32 address, RequestedAddressSpace space) { return HostTryReadUX(address, space); } TryReadResult HostTryReadU32(u32 address, RequestedAddressSpace space) { return HostTryReadUX(address, space); } TryReadResult HostTryReadU64(u32 address, RequestedAddressSpace space) { return HostTryReadUX(address, space); } TryReadResult HostTryReadF32(u32 address, RequestedAddressSpace space) { const auto result = HostTryReadUX(address, space); if (!result) return TryReadResult(); return TryReadResult(result.translated, Common::BitCast(result.value)); } TryReadResult HostTryReadF64(u32 address, RequestedAddressSpace space) { const auto result = HostTryReadUX(address, space); if (!result) return TryReadResult(); return TryReadResult(result.translated, Common::BitCast(result.value)); } u32 Read_U8_ZX(const u32 address) { return Read_U8(address); } u32 Read_U16_ZX(const u32 address) { return Read_U16(address); } void Write_U8(const u32 var, const u32 address) { Memcheck(address, var, true, 1); WriteToHardware(address, var, 1); } void Write_U16(const u32 var, const u32 address) { Memcheck(address, var, true, 2); WriteToHardware(address, var, 2); } void Write_U16_Swap(const u32 var, const u32 address) { Write_U16((var & 0xFFFF0000) | Common::swap16(static_cast(var)), address); } void Write_U32(const u32 var, const u32 address) { Memcheck(address, var, true, 4); WriteToHardware(address, var, 4); } void Write_U32_Swap(const u32 var, const u32 address) { Write_U32(Common::swap32(var), address); } void Write_U64(const u64 var, const u32 address) { Memcheck(address, var, true, 8); WriteToHardware(address, static_cast(var >> 32), 4); WriteToHardware(address + sizeof(u32), static_cast(var), 4); } void Write_U64_Swap(const u64 var, const u32 address) { Write_U64(Common::swap64(var), address); } void Write_F64(const double var, const u32 address) { const u64 integral = Common::BitCast(var); Write_U64(integral, address); } u8 HostRead_U8(const u32 address) { return ReadFromHardware(address); } u16 HostRead_U16(const u32 address) { return ReadFromHardware(address); } u32 HostRead_U32(const u32 address) { return ReadFromHardware(address); } u64 HostRead_U64(const u32 address) { return ReadFromHardware(address); } float HostRead_F32(const u32 address) { const u32 integral = HostRead_U32(address); return Common::BitCast(integral); } double HostRead_F64(const u32 address) { const u64 integral = HostRead_U64(address); return Common::BitCast(integral); } void HostWrite_U8(const u32 var, const u32 address) { WriteToHardware(address, var, 1); } void HostWrite_U16(const u32 var, const u32 address) { WriteToHardware(address, var, 2); } void HostWrite_U32(const u32 var, const u32 address) { WriteToHardware(address, var, 4); } void HostWrite_U64(const u64 var, const u32 address) { WriteToHardware(address, static_cast(var >> 32), 4); WriteToHardware(address + sizeof(u32), static_cast(var), 4); } void HostWrite_F32(const float var, const u32 address) { const u32 integral = Common::BitCast(var); HostWrite_U32(integral, address); } void HostWrite_F64(const double var, const u32 address) { const u64 integral = Common::BitCast(var); HostWrite_U64(integral, address); } static TryWriteResult HostTryWriteUX(const u32 var, const u32 address, const u32 size, RequestedAddressSpace space) { if (!HostIsRAMAddress(address, space)) return TryWriteResult(); switch (space) { case RequestedAddressSpace::Effective: WriteToHardware(address, var, size); return TryWriteResult(!!MSR.DR); case RequestedAddressSpace::Physical: WriteToHardware(address, var, size); return TryWriteResult(false); case RequestedAddressSpace::Virtual: if (!MSR.DR) return TryWriteResult(); WriteToHardware(address, var, size); return TryWriteResult(true); } assert(0); return TryWriteResult(); } TryWriteResult HostTryWriteU8(const u32 var, const u32 address, RequestedAddressSpace space) { return HostTryWriteUX(var, address, 1, space); } TryWriteResult HostTryWriteU16(const u32 var, const u32 address, RequestedAddressSpace space) { return HostTryWriteUX(var, address, 2, space); } TryWriteResult HostTryWriteU32(const u32 var, const u32 address, RequestedAddressSpace space) { return HostTryWriteUX(var, address, 4, space); } TryWriteResult HostTryWriteU64(const u64 var, const u32 address, RequestedAddressSpace space) { const TryWriteResult result = HostTryWriteUX(static_cast(var >> 32), address, 4, space); if (!result) return result; return HostTryWriteUX(static_cast(var), address + 4, 4, space); } TryWriteResult HostTryWriteF32(const float var, const u32 address, RequestedAddressSpace space) { const u32 integral = Common::BitCast(var); return HostTryWriteU32(integral, address, space); } TryWriteResult HostTryWriteF64(const double var, const u32 address, RequestedAddressSpace space) { const u64 integral = Common::BitCast(var); return HostTryWriteU64(integral, address, space); } std::string HostGetString(u32 address, size_t size) { std::string s; do { if (!HostIsRAMAddress(address)) break; u8 res = HostRead_U8(address); if (!res) break; s += static_cast(res); ++address; } while (size == 0 || s.length() < size); return s; } TryReadResult HostTryReadString(u32 address, size_t size, RequestedAddressSpace space) { auto c = HostTryReadU8(address, space); if (!c) return TryReadResult(); if (c.value == 0) return TryReadResult(c.translated, ""); std::string s; s += static_cast(c.value); while (size == 0 || s.length() < size) { ++address; const auto res = HostTryReadU8(address, space); if (!res || res.value == 0) break; s += static_cast(res.value); } return TryReadResult(c.translated, std::move(s)); } bool IsOptimizableRAMAddress(const u32 address) { if (PowerPC::memchecks.HasAny()) return false; if (!MSR.DR) return false; // TODO: This API needs to take an access size // // We store whether an access can be optimized to an unchecked access // in dbat_table. u32 bat_result = dbat_table[address >> BAT_INDEX_SHIFT]; return (bat_result & BAT_PHYSICAL_BIT) != 0; } template static bool IsRAMAddress(u32 address, bool translate) { if (translate) { auto translate_address = TranslateAddress(address); if (!translate_address.Success()) return false; address = translate_address.address; } u32 segment = address >> 28; if (Memory::m_pRAM && segment == 0x0 && (address & 0x0FFFFFFF) < Memory::GetRamSizeReal()) { return true; } else if (Memory::m_pEXRAM && segment == 0x1 && (address & 0x0FFFFFFF) < Memory::GetExRamSizeReal()) { return true; } else if (Memory::m_pFakeVMEM && ((address & 0xFE000000) == 0x7E000000)) { return true; } else if (Memory::m_pL1Cache && segment == 0xE && (address < (0xE0000000 + Memory::GetL1CacheSize()))) { return true; } return false; } bool HostIsRAMAddress(u32 address, RequestedAddressSpace space) { switch (space) { case RequestedAddressSpace::Effective: return IsRAMAddress(address, MSR.DR); case RequestedAddressSpace::Physical: return IsRAMAddress(address, false); case RequestedAddressSpace::Virtual: if (!MSR.DR) return false; return IsRAMAddress(address, true); } assert(0); return false; } bool HostIsInstructionRAMAddress(u32 address, RequestedAddressSpace space) { // Instructions are always 32bit aligned. if (address & 3) return false; switch (space) { case RequestedAddressSpace::Effective: return IsRAMAddress(address, MSR.IR); case RequestedAddressSpace::Physical: return IsRAMAddress(address, false); case RequestedAddressSpace::Virtual: if (!MSR.IR) return false; return IsRAMAddress(address, true); } assert(0); return false; } void DMA_LCToMemory(const u32 mem_address, const u32 cache_address, const u32 num_blocks) { // TODO: It's not completely clear this is the right spot for this code; // what would happen if, for example, the DVD drive tried to write to the EFB? // TODO: This is terribly slow. // TODO: Refactor. // Avatar: The Last Airbender (GC) uses this for videos. if ((mem_address & 0x0F000000) == 0x08000000) { for (u32 i = 0; i < 32 * num_blocks; i += 4) { const u32 data = Common::swap32(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF)); EFB_Write(data, mem_address + i); } return; } // No known game uses this; here for completeness. // TODO: Refactor. if ((mem_address & 0x0F000000) == 0x0C000000) { for (u32 i = 0; i < 32 * num_blocks; i += 4) { const u32 data = Common::swap32(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF)); Memory::mmio_mapping->Write(mem_address + i, data); } return; } const u8* src = Memory::m_pL1Cache + (cache_address & 0x3FFFF); u8* dst = Memory::GetPointer(mem_address); if (dst == nullptr) return; memcpy(dst, src, 32 * num_blocks); } void DMA_MemoryToLC(const u32 cache_address, const u32 mem_address, const u32 num_blocks) { const u8* src = Memory::GetPointer(mem_address); u8* dst = Memory::m_pL1Cache + (cache_address & 0x3FFFF); // No known game uses this; here for completeness. // TODO: Refactor. if ((mem_address & 0x0F000000) == 0x08000000) { for (u32 i = 0; i < 32 * num_blocks; i += 4) { const u32 data = Common::swap32(EFB_Read(mem_address + i)); std::memcpy(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF), &data, sizeof(u32)); } return; } // No known game uses this. // TODO: Refactor. if ((mem_address & 0x0F000000) == 0x0C000000) { for (u32 i = 0; i < 32 * num_blocks; i += 4) { const u32 data = Common::swap32(Memory::mmio_mapping->Read(mem_address + i)); std::memcpy(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF), &data, sizeof(u32)); } return; } if (src == nullptr) return; memcpy(dst, src, 32 * num_blocks); } void ClearCacheLine(u32 address) { DEBUG_ASSERT((address & 0x1F) == 0); if (MSR.DR) { auto translated_address = TranslateAddress(address); if (translated_address.result == TranslateAddressResultEnum::DIRECT_STORE_SEGMENT) { // dcbz to direct store segments is ignored. This is a little // unintuitive, but this is consistent with both console and the PEM. // Advance Game Port crashes if we don't emulate this correctly. return; } if (translated_address.result == TranslateAddressResultEnum::PAGE_FAULT) { // If translation fails, generate a DSI. GenerateDSIException(address, true); return; } address = translated_address.address; } // TODO: This isn't precisely correct for non-RAM regions, but the difference // is unlikely to matter. for (u32 i = 0; i < 32; i += 4) WriteToHardware(address + i, 0, 4); } u32 IsOptimizableMMIOAccess(u32 address, u32 access_size) { if (PowerPC::memchecks.HasAny()) return 0; if (!MSR.DR) return 0; // Translate address // If we also optimize for TLB mappings, we'd have to clear the // JitCache on each TLB invalidation. bool wi = false; if (!TranslateBatAddess(dbat_table, &address, &wi)) return 0; // Check whether the address is an aligned address of an MMIO register. const bool aligned = (address & ((access_size >> 3) - 1)) == 0; if (!aligned || !MMIO::IsMMIOAddress(address)) return 0; return address; } bool IsOptimizableGatherPipeWrite(u32 address) { if (PowerPC::memchecks.HasAny()) return false; if (!MSR.DR) return false; // Translate address, only check BAT mapping. // If we also optimize for TLB mappings, we'd have to clear the // JitCache on each TLB invalidation. bool wi = false; if (!TranslateBatAddess(dbat_table, &address, &wi)) return false; // Check whether the translated address equals the address in WPAR. return address == 0x0C008000; } TranslateResult JitCache_TranslateAddress(u32 address) { if (!MSR.IR) return TranslateResult{address}; // TODO: We shouldn't use FLAG_OPCODE if the caller is the debugger. const auto tlb_addr = TranslateAddress(address); if (!tlb_addr.Success()) return TranslateResult{}; const bool from_bat = tlb_addr.result == TranslateAddressResultEnum::BAT_TRANSLATED; return TranslateResult{from_bat, tlb_addr.address}; } // ********************************************************************************* // Warning: Test Area // // This code is for TESTING and it works in interpreter mode ONLY. Some games (like // COD iirc) work thanks to this basic TLB emulation. // It is just a small hack and we have never spend enough time to finalize it. // Cheers PearPC! // // ********************************************************************************* /* * PearPC * ppc_mmu.cc * * Copyright (C) 2003, 2004 Sebastian Biallas (sb@biallas.net) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ static void GenerateDSIException(u32 effective_address, bool write) { // DSI exceptions are only supported in MMU mode. if (!SConfig::GetInstance().bMMU) { PanicAlertFmt("Invalid {} {:#010x}, PC = {:#010x}", write ? "write to" : "read from", effective_address, PC); return; } constexpr u32 dsisr_page = 1U << 30; constexpr u32 dsisr_store = 1U << 25; if (effective_address != 0) ppcState.spr[SPR_DSISR] = dsisr_page | dsisr_store; else ppcState.spr[SPR_DSISR] = dsisr_page; ppcState.spr[SPR_DAR] = effective_address; ppcState.Exceptions |= EXCEPTION_DSI; } static void GenerateISIException(u32 effective_address) { // Address of instruction could not be translated NPC = effective_address; PowerPC::ppcState.Exceptions |= EXCEPTION_ISI; WARN_LOG_FMT(POWERPC, "ISI exception at {:#010x}", PC); } void SDRUpdated() { const auto sdr = UReg_SDR1{ppcState.spr[SPR_SDR]}; const u32 htabmask = sdr.htabmask; if (!Common::IsValidLowMask(htabmask)) WARN_LOG_FMT(POWERPC, "Invalid HTABMASK: 0b{:032b}", htabmask); // While 6xx_pem.pdf ยง7.6.1.1 mentions that the number of trailing zeros in HTABORG // must be equal to the number of trailing ones in the mask (i.e. HTABORG must be // properly aligned), this is actually not a hard requirement. Real hardware will just OR // the base address anyway. Ignoring SDR changes would lead to incorrect emulation. const u32 htaborg = sdr.htaborg; if ((htaborg & htabmask) != 0) WARN_LOG_FMT(POWERPC, "Invalid HTABORG: htaborg=0x{:08x} htabmask=0x{:08x}", htaborg, htabmask); ppcState.pagetable_base = htaborg << 16; ppcState.pagetable_hashmask = ((htabmask << 10) | 0x3ff); } enum class TLBLookupResult { Found, NotFound, UpdateC }; static TLBLookupResult LookupTLBPageAddress(const XCheckTLBFlag flag, const u32 vpa, u32* paddr, bool* wi) { const u32 tag = vpa >> HW_PAGE_INDEX_SHIFT; TLBEntry& tlbe = ppcState.tlb[IsOpcodeFlag(flag)][tag & HW_PAGE_INDEX_MASK]; if (tlbe.tag[0] == tag) { UPTE_Hi pte2(tlbe.pte[0]); // Check if C bit requires updating if (flag == XCheckTLBFlag::Write) { if (pte2.C == 0) { pte2.C = 1; tlbe.pte[0] = pte2.Hex; return TLBLookupResult::UpdateC; } } if (!IsNoExceptionFlag(flag)) tlbe.recent = 0; *paddr = tlbe.paddr[0] | (vpa & 0xfff); *wi = (pte2.WIMG & 0b1100) != 0; return TLBLookupResult::Found; } if (tlbe.tag[1] == tag) { UPTE_Hi pte2(tlbe.pte[1]); // Check if C bit requires updating if (flag == XCheckTLBFlag::Write) { if (pte2.C == 0) { pte2.C = 1; tlbe.pte[1] = pte2.Hex; return TLBLookupResult::UpdateC; } } if (!IsNoExceptionFlag(flag)) tlbe.recent = 1; *paddr = tlbe.paddr[1] | (vpa & 0xfff); *wi = (pte2.WIMG & 0b1100) != 0; return TLBLookupResult::Found; } return TLBLookupResult::NotFound; } static void UpdateTLBEntry(const XCheckTLBFlag flag, UPTE_Hi pte2, const u32 address) { if (IsNoExceptionFlag(flag)) return; const u32 tag = address >> HW_PAGE_INDEX_SHIFT; TLBEntry& tlbe = ppcState.tlb[IsOpcodeFlag(flag)][tag & HW_PAGE_INDEX_MASK]; const u32 index = tlbe.recent == 0 && tlbe.tag[0] != TLBEntry::INVALID_TAG; tlbe.recent = index; tlbe.paddr[index] = pte2.RPN << HW_PAGE_INDEX_SHIFT; tlbe.pte[index] = pte2.Hex; tlbe.tag[index] = tag; } void InvalidateTLBEntry(u32 address) { const u32 entry_index = (address >> HW_PAGE_INDEX_SHIFT) & HW_PAGE_INDEX_MASK; ppcState.tlb[0][entry_index].Invalidate(); ppcState.tlb[1][entry_index].Invalidate(); } union EffectiveAddress { BitField<0, 12, u32> offset; BitField<12, 16, u32> page_index; BitField<22, 6, u32> API; BitField<28, 4, u32> SR; u32 Hex = 0; EffectiveAddress() = default; explicit EffectiveAddress(u32 address) : Hex{address} {} }; // Page Address Translation static TranslateAddressResult TranslatePageAddress(const EffectiveAddress address, const XCheckTLBFlag flag, bool* wi) { // TLB cache // This catches 99%+ of lookups in practice, so the actual page table entry code below doesn't // benefit much from optimization. u32 translated_address = 0; const TLBLookupResult res = LookupTLBPageAddress(flag, address.Hex, &translated_address, wi); if (res == TLBLookupResult::Found) { return TranslateAddressResult{TranslateAddressResultEnum::PAGE_TABLE_TRANSLATED, translated_address}; } const auto sr = UReg_SR{ppcState.sr[address.SR]}; if (sr.T != 0) return TranslateAddressResult{TranslateAddressResultEnum::DIRECT_STORE_SEGMENT, 0}; // TODO: Handle KS/KP segment register flags. // No-execute segment register flag. if ((flag == XCheckTLBFlag::Opcode || flag == XCheckTLBFlag::OpcodeNoException) && sr.N != 0) { return TranslateAddressResult{TranslateAddressResultEnum::PAGE_FAULT, 0}; } const u32 offset = address.offset; // 12 bit const u32 page_index = address.page_index; // 16 bit const u32 VSID = sr.VSID; // 24 bit const u32 api = address.API; // 6 bit (part of page_index) // hash function no 1 "xor" .360 u32 hash = (VSID ^ page_index); UPTE_Lo pte1; pte1.VSID = VSID; pte1.API = api; pte1.V = 1; for (int hash_func = 0; hash_func < 2; hash_func++) { // hash function no 2 "not" .360 if (hash_func == 1) { hash = ~hash; pte1.H = 1; } u32 pteg_addr = ((hash & PowerPC::ppcState.pagetable_hashmask) << 6) | PowerPC::ppcState.pagetable_base; for (int i = 0; i < 8; i++, pteg_addr += 8) { const u32 pteg = Memory::Read_U32(pteg_addr); if (pte1.Hex == pteg) { UPTE_Hi pte2(Memory::Read_U32(pteg_addr + 4)); // set the access bits switch (flag) { case XCheckTLBFlag::NoException: case XCheckTLBFlag::OpcodeNoException: break; case XCheckTLBFlag::Read: pte2.R = 1; break; case XCheckTLBFlag::Write: pte2.R = 1; pte2.C = 1; break; case XCheckTLBFlag::Opcode: pte2.R = 1; break; } if (!IsNoExceptionFlag(flag)) { Memory::Write_U32(pte2.Hex, pteg_addr + 4); } // We already updated the TLB entry if this was caused by a C bit. if (res != TLBLookupResult::UpdateC) UpdateTLBEntry(flag, pte2, address.Hex); *wi = (pte2.WIMG & 0b1100) != 0; return TranslateAddressResult{TranslateAddressResultEnum::PAGE_TABLE_TRANSLATED, (pte2.RPN << 12) | offset}; } } } return TranslateAddressResult{TranslateAddressResultEnum::PAGE_FAULT, 0}; } static void UpdateBATs(BatTable& bat_table, u32 base_spr) { // TODO: Separate BATs for MSR.PR==0 and MSR.PR==1 // TODO: Handle PP settings. // TODO: Check how hardware reacts to overlapping BATs (including // BATs which should cause a DSI). // TODO: Check how hardware reacts to invalid BATs (bad mask etc). for (int i = 0; i < 4; ++i) { const u32 spr = base_spr + i * 2; const UReg_BAT_Up batu{ppcState.spr[spr]}; const UReg_BAT_Lo batl{ppcState.spr[spr + 1]}; if (batu.VS == 0 && batu.VP == 0) continue; if ((batu.BEPI & batu.BL) != 0) { // With a valid BAT, the simplest way to match is // (input & ~BL_mask) == BEPI. For now, assume it's // implemented this way for invalid BATs as well. WARN_LOG_FMT(POWERPC, "Bad BAT setup: BEPI overlaps BL"); continue; } if ((batl.BRPN & batu.BL) != 0) { // With a valid BAT, the simplest way to translate is // (input & BL_mask) | BRPN_address. For now, assume it's // implemented this way for invalid BATs as well. WARN_LOG_FMT(POWERPC, "Bad BAT setup: BPRN overlaps BL"); } if (!Common::IsValidLowMask((u32)batu.BL)) { // With a valid BAT, the simplest way of masking is // (input & ~BL_mask) for matching and (input & BL_mask) for // translation. For now, assume it's implemented this way for // invalid BATs as well. WARN_LOG_FMT(POWERPC, "Bad BAT setup: invalid mask in BL"); } for (u32 j = 0; j <= batu.BL; ++j) { // Enumerate all bit-patterns which fit within the given mask. if ((j & batu.BL) == j) { // This bit is a little weird: if BRPN & j != 0, we end up with // a strange mapping. Need to check on hardware. u32 physical_address = (batl.BRPN | j) << BAT_INDEX_SHIFT; u32 virtual_address = (batu.BEPI | j) << BAT_INDEX_SHIFT; // BAT_MAPPED_BIT is whether the translation is valid // BAT_PHYSICAL_BIT is whether we can use the fastmem arena // BAT_WI_BIT is whether either W or I (of WIMG) is set u32 valid_bit = BAT_MAPPED_BIT; const bool wi = (batl.WIMG & 0b1100) != 0; if (wi) valid_bit |= BAT_WI_BIT; // Enable fastmem mappings for cached memory. There are quirks related to uncached memory // that fastmem doesn't emulate properly (though no normal games are known to rely on them). if (!wi) { if (Memory::m_pFakeVMEM && (physical_address & 0xFE000000) == 0x7E000000) { valid_bit |= BAT_PHYSICAL_BIT; } else if (physical_address < Memory::GetRamSizeReal()) { valid_bit |= BAT_PHYSICAL_BIT; } else if (Memory::m_pEXRAM && physical_address >> 28 == 0x1 && (physical_address & 0x0FFFFFFF) < Memory::GetExRamSizeReal()) { valid_bit |= BAT_PHYSICAL_BIT; } else if (physical_address >> 28 == 0xE && physical_address < 0xE0000000 + Memory::GetL1CacheSize()) { valid_bit |= BAT_PHYSICAL_BIT; } } // Fastmem doesn't support memchecks, so disable it for all overlapping virtual pages. if (PowerPC::memchecks.OverlapsMemcheck(virtual_address, BAT_PAGE_SIZE)) valid_bit &= ~BAT_PHYSICAL_BIT; // (BEPI | j) == (BEPI & ~BL) | (j & BL). bat_table[virtual_address >> BAT_INDEX_SHIFT] = physical_address | valid_bit; } } } } static void UpdateFakeMMUBat(BatTable& bat_table, u32 start_addr) { for (u32 i = 0; i < (0x10000000 >> BAT_INDEX_SHIFT); ++i) { // Map from 0x4XXXXXXX or 0x7XXXXXXX to the range // [0x7E000000,0x80000000). u32 e_address = i + (start_addr >> BAT_INDEX_SHIFT); u32 p_address = 0x7E000000 | (i << BAT_INDEX_SHIFT & Memory::GetFakeVMemMask()); u32 flags = BAT_MAPPED_BIT | BAT_PHYSICAL_BIT; if (PowerPC::memchecks.OverlapsMemcheck(e_address << BAT_INDEX_SHIFT, BAT_PAGE_SIZE)) flags &= ~BAT_PHYSICAL_BIT; bat_table[e_address] = p_address | flags; } } void DBATUpdated() { dbat_table = {}; UpdateBATs(dbat_table, SPR_DBAT0U); bool extended_bats = SConfig::GetInstance().bWii && HID4.SBE; if (extended_bats) UpdateBATs(dbat_table, SPR_DBAT4U); if (Memory::m_pFakeVMEM) { // In Fake-MMU mode, insert some extra entries into the BAT tables. UpdateFakeMMUBat(dbat_table, 0x40000000); UpdateFakeMMUBat(dbat_table, 0x70000000); } #ifndef _ARCH_32 Memory::UpdateLogicalMemory(dbat_table); #endif // IsOptimizable*Address and dcbz depends on the BAT mapping, so we need a flush here. JitInterface::ClearSafe(); } void IBATUpdated() { ibat_table = {}; UpdateBATs(ibat_table, SPR_IBAT0U); bool extended_bats = SConfig::GetInstance().bWii && HID4.SBE; if (extended_bats) UpdateBATs(ibat_table, SPR_IBAT4U); if (Memory::m_pFakeVMEM) { // In Fake-MMU mode, insert some extra entries into the BAT tables. UpdateFakeMMUBat(ibat_table, 0x40000000); UpdateFakeMMUBat(ibat_table, 0x70000000); } JitInterface::ClearSafe(); } // Translate effective address using BAT or PAT. Returns 0 if the address cannot be translated. // Through the hardware looks up BAT and TLB in parallel, BAT is used first if available. // So we first check if there is a matching BAT entry, else we look for the TLB in // TranslatePageAddress(). template static TranslateAddressResult TranslateAddress(u32 address) { bool wi = false; if (TranslateBatAddess(IsOpcodeFlag(flag) ? ibat_table : dbat_table, &address, &wi)) return TranslateAddressResult{TranslateAddressResultEnum::BAT_TRANSLATED, address, wi}; return TranslatePageAddress(EffectiveAddress{address}, flag, &wi); } std::optional GetTranslatedAddress(u32 address) { auto result = TranslateAddress(address); if (!result.Success()) { return std::nullopt; } return std::optional(result.address); } } // namespace PowerPC