// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/ObjectCache.h" #include #include #include #include #include "Common/Assert.h" #include "Common/CommonFuncs.h" #include "Common/LinearDiskCache.h" #include "Common/MsgHandler.h" #include "Core/ConfigManager.h" #include "VideoBackends/Vulkan/ShaderCompiler.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VertexFormat.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/Statistics.h" namespace Vulkan { std::unique_ptr g_object_cache; ObjectCache::ObjectCache() { } ObjectCache::~ObjectCache() { DestroyPipelineCache(); DestroyShaderCaches(); DestroySharedShaders(); DestroySamplers(); DestroyPipelineLayouts(); DestroyDescriptorSetLayouts(); } bool ObjectCache::Initialize() { if (!CreateDescriptorSetLayouts()) return false; if (!CreatePipelineLayouts()) return false; LoadShaderCaches(); if (!CreatePipelineCache(true)) return false; if (!CreateUtilityShaderVertexFormat()) return false; if (!CreateStaticSamplers()) return false; if (!CompileSharedShaders()) return false; m_utility_shader_vertex_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, 1024 * 1024, 4 * 1024 * 1024); m_utility_shader_uniform_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, 1024, 4 * 1024 * 1024); if (!m_utility_shader_vertex_buffer || !m_utility_shader_uniform_buffer) return false; return true; } static bool IsStripPrimitiveTopology(VkPrimitiveTopology topology) { return topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP || topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP || topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY || topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY; } static VkPipelineRasterizationStateCreateInfo GetVulkanRasterizationState(const RasterizationState& state) { return { VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineRasterizationStateCreateFlags flags state.depth_clamp, // VkBool32 depthClampEnable VK_FALSE, // VkBool32 rasterizerDiscardEnable VK_POLYGON_MODE_FILL, // VkPolygonMode polygonMode state.cull_mode, // VkCullModeFlags cullMode VK_FRONT_FACE_CLOCKWISE, // VkFrontFace frontFace VK_FALSE, // VkBool32 depthBiasEnable 0.0f, // float depthBiasConstantFactor 0.0f, // float depthBiasClamp 0.0f, // float depthBiasSlopeFactor 1.0f // float lineWidth }; } static VkPipelineMultisampleStateCreateInfo GetVulkanMultisampleState(const RasterizationState& rs_state) { return { VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineMultisampleStateCreateFlags flags rs_state.samples, // VkSampleCountFlagBits rasterizationSamples rs_state.per_sample_shading, // VkBool32 sampleShadingEnable 1.0f, // float minSampleShading nullptr, // const VkSampleMask* pSampleMask; VK_FALSE, // VkBool32 alphaToCoverageEnable VK_FALSE // VkBool32 alphaToOneEnable }; } static VkPipelineDepthStencilStateCreateInfo GetVulkanDepthStencilState(const DepthStencilState& state) { return { VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineDepthStencilStateCreateFlags flags state.test_enable, // VkBool32 depthTestEnable state.write_enable, // VkBool32 depthWriteEnable state.compare_op, // VkCompareOp depthCompareOp VK_FALSE, // VkBool32 depthBoundsTestEnable VK_FALSE, // VkBool32 stencilTestEnable {}, // VkStencilOpState front {}, // VkStencilOpState back 0.0f, // float minDepthBounds 1.0f // float maxDepthBounds }; } static VkPipelineColorBlendAttachmentState GetVulkanAttachmentBlendState(const BlendingState& state) { VkPipelineColorBlendAttachmentState vk_state = {}; vk_state.blendEnable = static_cast(state.blendenable); vk_state.colorBlendOp = state.subtract ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD; vk_state.alphaBlendOp = state.subtractAlpha ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD; if (state.usedualsrc && g_vulkan_context->SupportsDualSourceBlend()) { static constexpr std::array src_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; static constexpr std::array dst_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; vk_state.srcColorBlendFactor = src_factors[state.srcfactor]; vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha]; vk_state.dstColorBlendFactor = dst_factors[state.dstfactor]; vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha]; } else { static constexpr std::array src_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; static constexpr std::array dst_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; vk_state.srcColorBlendFactor = src_factors[state.srcfactor]; vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha]; vk_state.dstColorBlendFactor = dst_factors[state.dstfactor]; vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha]; } if (state.colorupdate) { vk_state.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT; } else { vk_state.colorWriteMask = 0; } if (state.alphaupdate) vk_state.colorWriteMask |= VK_COLOR_COMPONENT_A_BIT; return vk_state; } static VkPipelineColorBlendStateCreateInfo GetVulkanColorBlendState(const BlendingState& state, const VkPipelineColorBlendAttachmentState* attachments, uint32_t num_attachments) { static constexpr std::array vk_logic_ops = { {VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY, VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR, VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE, VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}}; VkBool32 vk_logic_op_enable = static_cast(state.logicopenable); if (vk_logic_op_enable && !g_vulkan_context->SupportsLogicOps()) { // At the time of writing, Adreno and Mali drivers didn't support logic ops. // The "emulation" through blending path has been removed, so just disable it completely. // These drivers don't support dual-source blend either, so issues are to be expected. vk_logic_op_enable = VK_FALSE; } VkLogicOp vk_logic_op = vk_logic_op_enable ? vk_logic_ops[state.logicmode] : VK_LOGIC_OP_CLEAR; VkPipelineColorBlendStateCreateInfo vk_state = { VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineColorBlendStateCreateFlags flags vk_logic_op_enable, // VkBool32 logicOpEnable vk_logic_op, // VkLogicOp logicOp num_attachments, // uint32_t attachmentCount attachments, // const VkPipelineColorBlendAttachmentState* pAttachments {1.0f, 1.0f, 1.0f, 1.0f} // float blendConstants[4] }; return vk_state; } VkPipeline ObjectCache::CreatePipeline(const PipelineInfo& info) { // Declare descriptors for empty vertex buffers/attributes static const VkPipelineVertexInputStateCreateInfo empty_vertex_input_state = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineVertexInputStateCreateFlags flags 0, // uint32_t vertexBindingDescriptionCount nullptr, // const VkVertexInputBindingDescription* pVertexBindingDescriptions 0, // uint32_t vertexAttributeDescriptionCount nullptr // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions }; // Vertex inputs const VkPipelineVertexInputStateCreateInfo& vertex_input_state = info.vertex_format ? info.vertex_format->GetVertexInputStateInfo() : empty_vertex_input_state; // Input assembly VkPipelineInputAssemblyStateCreateInfo input_assembly_state = { VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineInputAssemblyStateCreateFlags flags info.primitive_topology, // VkPrimitiveTopology topology VK_FALSE // VkBool32 primitiveRestartEnable }; // See Vulkan spec, section 19: // If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST, // VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, // VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, // primitiveRestartEnable must be VK_FALSE if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart && IsStripPrimitiveTopology(info.primitive_topology)) { input_assembly_state.primitiveRestartEnable = VK_TRUE; } // Shaders to stages VkPipelineShaderStageCreateInfo shader_stages[3]; uint32_t num_shader_stages = 0; if (info.vs != VK_NULL_HANDLE) { shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_VERTEX_BIT, info.vs, "main"}; } if (info.gs != VK_NULL_HANDLE) { shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_GEOMETRY_BIT, info.gs, "main"}; } if (info.ps != VK_NULL_HANDLE) { shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_FRAGMENT_BIT, info.ps, "main"}; } // Fill in Vulkan descriptor structs from our state structures. VkPipelineRasterizationStateCreateInfo rasterization_state = GetVulkanRasterizationState(info.rasterization_state); VkPipelineMultisampleStateCreateInfo multisample_state = GetVulkanMultisampleState(info.rasterization_state); VkPipelineDepthStencilStateCreateInfo depth_stencil_state = GetVulkanDepthStencilState(info.depth_stencil_state); VkPipelineColorBlendAttachmentState blend_attachment_state = GetVulkanAttachmentBlendState(info.blend_state); VkPipelineColorBlendStateCreateInfo blend_state = GetVulkanColorBlendState(info.blend_state, &blend_attachment_state, 1); // This viewport isn't used, but needs to be specified anyway. static const VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f}; static const VkRect2D scissor = {{0, 0}, {1, 1}}; static const VkPipelineViewportStateCreateInfo viewport_state = { VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, nullptr, 0, // VkPipelineViewportStateCreateFlags flags; 1, // uint32_t viewportCount &viewport, // const VkViewport* pViewports 1, // uint32_t scissorCount &scissor // const VkRect2D* pScissors }; // Set viewport and scissor dynamic state so we can change it elsewhere. static const VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}; static const VkPipelineDynamicStateCreateInfo dynamic_state = { VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, nullptr, 0, // VkPipelineDynamicStateCreateFlags flags static_cast(ArraySize(dynamic_states)), // uint32_t dynamicStateCount dynamic_states // const VkDynamicState* pDynamicStates }; // Combine to full pipeline info structure. VkGraphicsPipelineCreateInfo pipeline_info = { VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, nullptr, // VkStructureType sType 0, // VkPipelineCreateFlags flags num_shader_stages, // uint32_t stageCount shader_stages, // const VkPipelineShaderStageCreateInfo* pStages &vertex_input_state, // const VkPipelineVertexInputStateCreateInfo* pVertexInputState &input_assembly_state, // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState nullptr, // const VkPipelineTessellationStateCreateInfo* pTessellationState &viewport_state, // const VkPipelineViewportStateCreateInfo* pViewportState &rasterization_state, // const VkPipelineRasterizationStateCreateInfo* pRasterizationState &multisample_state, // const VkPipelineMultisampleStateCreateInfo* pMultisampleState &depth_stencil_state, // const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState &blend_state, // const VkPipelineColorBlendStateCreateInfo* pColorBlendState &dynamic_state, // const VkPipelineDynamicStateCreateInfo* pDynamicState info.pipeline_layout, // VkPipelineLayout layout info.render_pass, // VkRenderPass renderPass 0, // uint32_t subpass VK_NULL_HANDLE, // VkPipeline basePipelineHandle -1 // int32_t basePipelineIndex }; VkPipeline pipeline; VkResult res = vkCreateGraphicsPipelines(g_vulkan_context->GetDevice(), m_pipeline_cache, 1, &pipeline_info, nullptr, &pipeline); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines failed: "); return VK_NULL_HANDLE; } return pipeline; } VkPipeline ObjectCache::GetPipeline(const PipelineInfo& info) { return GetPipelineWithCacheResult(info).first; } std::pair ObjectCache::GetPipelineWithCacheResult(const PipelineInfo& info) { auto iter = m_pipeline_objects.find(info); if (iter != m_pipeline_objects.end()) return {iter->second, true}; VkPipeline pipeline = CreatePipeline(info); m_pipeline_objects.emplace(info, pipeline); return {pipeline, false}; } VkPipeline ObjectCache::CreateComputePipeline(const ComputePipelineInfo& info) { VkComputePipelineCreateInfo pipeline_info = {VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, nullptr, 0, {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_COMPUTE_BIT, info.cs, "main", nullptr}, info.pipeline_layout, VK_NULL_HANDLE, -1}; VkPipeline pipeline; VkResult res = vkCreateComputePipelines(g_vulkan_context->GetDevice(), VK_NULL_HANDLE, 1, &pipeline_info, nullptr, &pipeline); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateComputePipelines failed: "); return VK_NULL_HANDLE; } return pipeline; } VkPipeline ObjectCache::GetComputePipeline(const ComputePipelineInfo& info) { auto iter = m_compute_pipeline_objects.find(info); if (iter != m_compute_pipeline_objects.end()) return iter->second; VkPipeline pipeline = CreateComputePipeline(info); m_compute_pipeline_objects.emplace(info, pipeline); return pipeline; } std::string ObjectCache::GetDiskCacheFileName(const char* type) { return StringFromFormat("%svulkan-%s-%s.cache", File::GetUserPath(D_SHADERCACHE_IDX).c_str(), SConfig::GetInstance().GetGameID().c_str(), type); } class PipelineCacheReadCallback : public LinearDiskCacheReader { public: PipelineCacheReadCallback(std::vector* data) : m_data(data) {} void Read(const u32& key, const u8* value, u32 value_size) override { m_data->resize(value_size); if (value_size > 0) memcpy(m_data->data(), value, value_size); } private: std::vector* m_data; }; class PipelineCacheReadIgnoreCallback : public LinearDiskCacheReader { public: void Read(const u32& key, const u8* value, u32 value_size) override {} }; bool ObjectCache::CreatePipelineCache(bool load_from_disk) { // We have to keep the pipeline cache file name around since when we save it // we delete the old one, by which time the game's unique ID is already cleared. m_pipeline_cache_filename = GetDiskCacheFileName("pipeline"); std::vector disk_data; if (load_from_disk) { LinearDiskCache disk_cache; PipelineCacheReadCallback read_callback(&disk_data); if (disk_cache.OpenAndRead(m_pipeline_cache_filename, read_callback) != 1) disk_data.clear(); } if (!disk_data.empty() && !ValidatePipelineCache(disk_data.data(), disk_data.size())) { // Don't use this data. In fact, we should delete it to prevent it from being used next time. File::Delete(m_pipeline_cache_filename); disk_data.clear(); } VkPipelineCacheCreateInfo info = { VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineCacheCreateFlags flags disk_data.size(), // size_t initialDataSize !disk_data.empty() ? disk_data.data() : nullptr, // const void* pInitialData }; VkResult res = vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache); if (res == VK_SUCCESS) return true; // Failed to create pipeline cache, try with it empty. LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed, trying empty cache: "); info.initialDataSize = 0; info.pInitialData = nullptr; res = vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache); if (res == VK_SUCCESS) return true; LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed: "); return false; } // Based on Vulkan 1.0 specification, // Table 9.1. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE // NOTE: This data is assumed to be in little-endian format. #pragma pack(push, 4) struct VK_PIPELINE_CACHE_HEADER { u32 header_length; u32 header_version; u32 vendor_id; u32 device_id; u8 uuid[VK_UUID_SIZE]; }; #pragma pack(pop) // TODO: Remove the #if here when GCC 5 is a minimum build requirement. #if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5 static_assert(std::has_trivial_copy_constructor::value, "VK_PIPELINE_CACHE_HEADER must be trivially copyable"); #else static_assert(std::is_trivially_copyable::value, "VK_PIPELINE_CACHE_HEADER must be trivially copyable"); #endif bool ObjectCache::ValidatePipelineCache(const u8* data, size_t data_length) { if (data_length < sizeof(VK_PIPELINE_CACHE_HEADER)) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header"); return false; } VK_PIPELINE_CACHE_HEADER header; std::memcpy(&header, data, sizeof(header)); if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER)) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header length"); return false; } if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header version"); return false; } if (header.vendor_id != g_vulkan_context->GetDeviceProperties().vendorID) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)", header.vendor_id, g_vulkan_context->GetDeviceProperties().vendorID); return false; } if (header.device_id != g_vulkan_context->GetDeviceProperties().deviceID) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)", header.device_id, g_vulkan_context->GetDeviceProperties().deviceID); return false; } if (std::memcmp(header.uuid, g_vulkan_context->GetDeviceProperties().pipelineCacheUUID, VK_UUID_SIZE) != 0) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect UUID"); return false; } return true; } void ObjectCache::DestroyPipelineCache() { for (const auto& it : m_pipeline_objects) { if (it.second != VK_NULL_HANDLE) vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second, nullptr); } m_pipeline_objects.clear(); for (const auto& it : m_compute_pipeline_objects) { if (it.second != VK_NULL_HANDLE) vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second, nullptr); } m_compute_pipeline_objects.clear(); vkDestroyPipelineCache(g_vulkan_context->GetDevice(), m_pipeline_cache, nullptr); m_pipeline_cache = VK_NULL_HANDLE; } void ObjectCache::SavePipelineCache() { size_t data_size; VkResult res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: "); return; } std::vector data(data_size); res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, data.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: "); return; } // Delete the old cache and re-create. File::Delete(m_pipeline_cache_filename); // We write a single key of 1, with the entire pipeline cache data. // Not ideal, but our disk cache class does not support just writing a single blob // of data without specifying a key. LinearDiskCache disk_cache; PipelineCacheReadIgnoreCallback callback; disk_cache.OpenAndRead(m_pipeline_cache_filename, callback); disk_cache.Append(1, data.data(), static_cast(data.size())); disk_cache.Close(); } // Cache inserter that is called back when reading from the file template struct ShaderCacheReader : public LinearDiskCacheReader { ShaderCacheReader(std::map& shader_map) : m_shader_map(shader_map) {} void Read(const Uid& key, const u32* value, u32 value_size) override { // We don't insert null modules into the shader map since creation could succeed later on. // e.g. we're generating bad code, but fix this in a later version, and for some reason // the cache is not invalidated. VkShaderModule module = Util::CreateShaderModule(value, value_size); if (module == VK_NULL_HANDLE) return; m_shader_map.emplace(key, module); } std::map& m_shader_map; }; void ObjectCache::LoadShaderCaches() { if (g_ActiveConfig.bShaderCache) { ShaderCacheReader vs_reader(m_vs_cache.shader_map); m_vs_cache.disk_cache.OpenAndRead(GetDiskCacheFileName("vs"), vs_reader); ShaderCacheReader ps_reader(m_ps_cache.shader_map); m_ps_cache.disk_cache.OpenAndRead(GetDiskCacheFileName("ps"), ps_reader); if (g_vulkan_context->SupportsGeometryShaders()) { ShaderCacheReader gs_reader(m_gs_cache.shader_map); m_gs_cache.disk_cache.OpenAndRead(GetDiskCacheFileName("gs"), gs_reader); } } SETSTAT(stats.numPixelShadersCreated, static_cast(m_ps_cache.shader_map.size())); SETSTAT(stats.numPixelShadersAlive, static_cast(m_ps_cache.shader_map.size())); SETSTAT(stats.numVertexShadersCreated, static_cast(m_vs_cache.shader_map.size())); SETSTAT(stats.numVertexShadersAlive, static_cast(m_vs_cache.shader_map.size())); } template static void DestroyShaderCache(T& cache) { cache.disk_cache.Close(); for (const auto& it : cache.shader_map) { if (it.second != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second, nullptr); } cache.shader_map.clear(); } void ObjectCache::DestroyShaderCaches() { DestroyShaderCache(m_vs_cache); DestroyShaderCache(m_ps_cache); if (g_vulkan_context->SupportsGeometryShaders()) DestroyShaderCache(m_gs_cache); } VkShaderModule ObjectCache::GetVertexShaderForUid(const VertexShaderUid& uid) { auto it = m_vs_cache.shader_map.find(uid); if (it != m_vs_cache.shader_map.end()) return it->second; // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = GenerateVertexShaderCode(APIType::Vulkan, uid.GetUidData()); if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) { m_vs_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); INCSTAT(stats.numVertexShadersCreated); INCSTAT(stats.numVertexShadersAlive); } } // We still insert null entries to prevent further compilation attempts. m_vs_cache.shader_map.emplace(uid, module); return module; } VkShaderModule ObjectCache::GetGeometryShaderForUid(const GeometryShaderUid& uid) { _assert_(g_vulkan_context->SupportsGeometryShaders()); auto it = m_gs_cache.shader_map.find(uid); if (it != m_gs_cache.shader_map.end()) return it->second; // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = GenerateGeometryShaderCode(APIType::Vulkan, uid.GetUidData()); if (ShaderCompiler::CompileGeometryShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) m_gs_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); } // We still insert null entries to prevent further compilation attempts. m_gs_cache.shader_map.emplace(uid, module); return module; } VkShaderModule ObjectCache::GetPixelShaderForUid(const PixelShaderUid& uid) { auto it = m_ps_cache.shader_map.find(uid); if (it != m_ps_cache.shader_map.end()) return it->second; // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = GeneratePixelShaderCode(APIType::Vulkan, uid.GetUidData()); if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) { m_ps_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); INCSTAT(stats.numPixelShadersCreated); INCSTAT(stats.numPixelShadersAlive); } } // We still insert null entries to prevent further compilation attempts. m_ps_cache.shader_map.emplace(uid, module); return module; } void ObjectCache::ClearSamplerCache() { for (const auto& it : m_sampler_cache) { if (it.second != VK_NULL_HANDLE) vkDestroySampler(g_vulkan_context->GetDevice(), it.second, nullptr); } m_sampler_cache.clear(); } void ObjectCache::DestroySamplers() { ClearSamplerCache(); if (m_point_sampler != VK_NULL_HANDLE) { vkDestroySampler(g_vulkan_context->GetDevice(), m_point_sampler, nullptr); m_point_sampler = VK_NULL_HANDLE; } if (m_linear_sampler != VK_NULL_HANDLE) { vkDestroySampler(g_vulkan_context->GetDevice(), m_linear_sampler, nullptr); m_linear_sampler = VK_NULL_HANDLE; } } void ObjectCache::RecompileSharedShaders() { DestroySharedShaders(); if (!CompileSharedShaders()) PanicAlert("Failed to recompile shared shaders."); } bool ObjectCache::CreateDescriptorSetLayouts() { static const VkDescriptorSetLayoutBinding ubo_set_bindings[] = { {UBO_DESCRIPTOR_SET_BINDING_PS, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {UBO_DESCRIPTOR_SET_BINDING_VS, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT}, {UBO_DESCRIPTOR_SET_BINDING_GS, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_GEOMETRY_BIT}}; // Annoying these have to be split, apparently we can't partially update an array without the // validation layers throwing a warning. static const VkDescriptorSetLayoutBinding sampler_set_bindings[] = { {0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {3, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {4, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {5, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {6, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, {7, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}}; static const VkDescriptorSetLayoutBinding ssbo_set_bindings[] = { {0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}}; static const VkDescriptorSetLayoutBinding texel_buffer_set_bindings[] = { {0, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}, }; static const VkDescriptorSetLayoutBinding compute_set_bindings[] = { {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {3, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {4, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {5, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {6, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT}, {7, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_COMPUTE_BIT}, }; static const VkDescriptorSetLayoutCreateInfo create_infos[NUM_DESCRIPTOR_SET_LAYOUTS] = { {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(ubo_set_bindings)), ubo_set_bindings}, {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(sampler_set_bindings)), sampler_set_bindings}, {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(ssbo_set_bindings)), ssbo_set_bindings}, {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(texel_buffer_set_bindings)), texel_buffer_set_bindings}, {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(compute_set_bindings)), compute_set_bindings}}; for (size_t i = 0; i < NUM_DESCRIPTOR_SET_LAYOUTS; i++) { VkResult res = vkCreateDescriptorSetLayout(g_vulkan_context->GetDevice(), &create_infos[i], nullptr, &m_descriptor_set_layouts[i]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorSetLayout failed: "); return false; } } return true; } void ObjectCache::DestroyDescriptorSetLayouts() { for (VkDescriptorSetLayout layout : m_descriptor_set_layouts) { if (layout != VK_NULL_HANDLE) vkDestroyDescriptorSetLayout(g_vulkan_context->GetDevice(), layout, nullptr); } } bool ObjectCache::CreatePipelineLayouts() { VkResult res; // Descriptor sets for each pipeline layout VkDescriptorSetLayout standard_sets[] = { m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_UNIFORM_BUFFERS], m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_PIXEL_SHADER_SAMPLERS]}; VkDescriptorSetLayout bbox_sets[] = { m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_UNIFORM_BUFFERS], m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_PIXEL_SHADER_SAMPLERS], m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_SHADER_STORAGE_BUFFERS]}; VkDescriptorSetLayout texture_conversion_sets[] = { m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_UNIFORM_BUFFERS], m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_PIXEL_SHADER_SAMPLERS], m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_TEXEL_BUFFERS]}; VkDescriptorSetLayout compute_sets[] = {m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_COMPUTE]}; VkPushConstantRange push_constant_range = { VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, PUSH_CONSTANT_BUFFER_SIZE}; VkPushConstantRange compute_push_constant_range = {VK_SHADER_STAGE_COMPUTE_BIT, 0, PUSH_CONSTANT_BUFFER_SIZE}; // Info for each pipeline layout VkPipelineLayoutCreateInfo pipeline_layout_info[NUM_PIPELINE_LAYOUTS] = { // Standard {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(standard_sets)), standard_sets, 0, nullptr}, // BBox {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(bbox_sets)), bbox_sets, 0, nullptr}, // Push Constant {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(standard_sets)), standard_sets, 1, &push_constant_range}, // Texture Conversion {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(texture_conversion_sets)), texture_conversion_sets, 1, &push_constant_range}, // Compute {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, static_cast(ArraySize(compute_sets)), compute_sets, 1, &compute_push_constant_range}}; for (size_t i = 0; i < NUM_PIPELINE_LAYOUTS; i++) { if ((res = vkCreatePipelineLayout(g_vulkan_context->GetDevice(), &pipeline_layout_info[i], nullptr, &m_pipeline_layouts[i])) != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreatePipelineLayout failed: "); return false; } } return true; } void ObjectCache::DestroyPipelineLayouts() { for (VkPipelineLayout layout : m_pipeline_layouts) { if (layout != VK_NULL_HANDLE) vkDestroyPipelineLayout(g_vulkan_context->GetDevice(), layout, nullptr); } } bool ObjectCache::CreateUtilityShaderVertexFormat() { PortableVertexDeclaration vtx_decl = {}; vtx_decl.position.enable = true; vtx_decl.position.type = VAR_FLOAT; vtx_decl.position.components = 4; vtx_decl.position.integer = false; vtx_decl.position.offset = offsetof(UtilityShaderVertex, Position); vtx_decl.texcoords[0].enable = true; vtx_decl.texcoords[0].type = VAR_FLOAT; vtx_decl.texcoords[0].components = 4; vtx_decl.texcoords[0].integer = false; vtx_decl.texcoords[0].offset = offsetof(UtilityShaderVertex, TexCoord); vtx_decl.colors[0].enable = true; vtx_decl.colors[0].type = VAR_UNSIGNED_BYTE; vtx_decl.colors[0].components = 4; vtx_decl.colors[0].integer = false; vtx_decl.colors[0].offset = offsetof(UtilityShaderVertex, Color); vtx_decl.stride = sizeof(UtilityShaderVertex); m_utility_shader_vertex_format = std::make_unique(vtx_decl); return true; } bool ObjectCache::CreateStaticSamplers() { VkSamplerCreateInfo create_info = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkSamplerCreateFlags flags VK_FILTER_NEAREST, // VkFilter magFilter VK_FILTER_NEAREST, // VkFilter minFilter VK_SAMPLER_MIPMAP_MODE_NEAREST, // VkSamplerMipmapMode mipmapMode VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, // VkSamplerAddressMode addressModeU VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, // VkSamplerAddressMode addressModeV VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, // VkSamplerAddressMode addressModeW 0.0f, // float mipLodBias VK_FALSE, // VkBool32 anisotropyEnable 1.0f, // float maxAnisotropy VK_FALSE, // VkBool32 compareEnable VK_COMPARE_OP_ALWAYS, // VkCompareOp compareOp std::numeric_limits::min(), // float minLod std::numeric_limits::max(), // float maxLod VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK, // VkBorderColor borderColor VK_FALSE // VkBool32 unnormalizedCoordinates }; VkResult res = vkCreateSampler(g_vulkan_context->GetDevice(), &create_info, nullptr, &m_point_sampler); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateSampler failed: "); return false; } // Most fields are shared across point<->linear samplers, so only change those necessary. create_info.minFilter = VK_FILTER_LINEAR; create_info.magFilter = VK_FILTER_LINEAR; create_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; res = vkCreateSampler(g_vulkan_context->GetDevice(), &create_info, nullptr, &m_linear_sampler); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateSampler failed: "); return false; } return true; } VkSampler ObjectCache::GetSampler(const SamplerState& info) { auto iter = m_sampler_cache.find(info); if (iter != m_sampler_cache.end()) return iter->second; VkSamplerCreateInfo create_info = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkSamplerCreateFlags flags info.mag_filter, // VkFilter magFilter info.min_filter, // VkFilter minFilter info.mipmap_mode, // VkSamplerMipmapMode mipmapMode info.wrap_u, // VkSamplerAddressMode addressModeU info.wrap_v, // VkSamplerAddressMode addressModeV VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, // VkSamplerAddressMode addressModeW static_cast(info.lod_bias / 32.0f), // float mipLodBias VK_FALSE, // VkBool32 anisotropyEnable 0.0f, // float maxAnisotropy VK_FALSE, // VkBool32 compareEnable VK_COMPARE_OP_ALWAYS, // VkCompareOp compareOp static_cast(info.min_lod / 16.0f), // float minLod static_cast(info.max_lod / 16.0f), // float maxLod VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK, // VkBorderColor borderColor VK_FALSE // VkBool32 unnormalizedCoordinates }; // Can we use anisotropic filtering with this sampler? if (info.enable_anisotropic_filtering && g_vulkan_context->SupportsAnisotropicFiltering()) { // Cap anisotropy to device limits. create_info.anisotropyEnable = VK_TRUE; create_info.maxAnisotropy = std::min(static_cast(1 << g_ActiveConfig.iMaxAnisotropy), g_vulkan_context->GetMaxSamplerAnisotropy()); } VkSampler sampler = VK_NULL_HANDLE; VkResult res = vkCreateSampler(g_vulkan_context->GetDevice(), &create_info, nullptr, &sampler); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkCreateSampler failed: "); // Store it even if it failed m_sampler_cache.emplace(info, sampler); return sampler; } std::string ObjectCache::GetUtilityShaderHeader() const { std::stringstream ss; if (g_ActiveConfig.iMultisamples > 1) { ss << "#define MSAA_ENABLED 1" << std::endl; ss << "#define MSAA_SAMPLES " << g_ActiveConfig.iMultisamples << std::endl; if (g_ActiveConfig.bSSAA) ss << "#define SSAA_ENABLED 1" << std::endl; } u32 efb_layers = (g_ActiveConfig.iStereoMode != STEREO_OFF) ? 2 : 1; ss << "#define EFB_LAYERS " << efb_layers << std::endl; return ss.str(); } // Comparison operators for PipelineInfos // Since these all boil down to POD types, we can just memcmp the entire thing for speed // The is_trivially_copyable check fails on MSVC due to BitField. // TODO: Can we work around this any way? #if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5 && !defined(_MSC_VER) static_assert(std::has_trivial_copy_constructor::value, "PipelineInfo is trivially copyable"); #elif !defined(_MSC_VER) static_assert(std::is_trivially_copyable::value, "PipelineInfo is trivially copyable"); #endif std::size_t PipelineInfoHash::operator()(const PipelineInfo& key) const { return static_cast(XXH64(&key, sizeof(key), 0)); } bool operator==(const PipelineInfo& lhs, const PipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0; } bool operator!=(const PipelineInfo& lhs, const PipelineInfo& rhs) { return !operator==(lhs, rhs); } bool operator<(const PipelineInfo& lhs, const PipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0; } bool operator>(const PipelineInfo& lhs, const PipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0; } bool operator==(const SamplerState& lhs, const SamplerState& rhs) { return lhs.bits == rhs.bits; } bool operator!=(const SamplerState& lhs, const SamplerState& rhs) { return !operator==(lhs, rhs); } bool operator>(const SamplerState& lhs, const SamplerState& rhs) { return lhs.bits > rhs.bits; } bool operator<(const SamplerState& lhs, const SamplerState& rhs) { return lhs.bits < rhs.bits; } std::size_t ComputePipelineInfoHash::operator()(const ComputePipelineInfo& key) const { return static_cast(XXH64(&key, sizeof(key), 0)); } bool operator==(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0; } bool operator!=(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return !operator==(lhs, rhs); } bool operator<(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0; } bool operator>(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0; } bool ObjectCache::CompileSharedShaders() { static const char PASSTHROUGH_VERTEX_SHADER_SOURCE[] = R"( layout(location = 0) in vec4 ipos; layout(location = 5) in vec4 icol0; layout(location = 8) in vec3 itex0; layout(location = 0) out vec3 uv0; layout(location = 1) out vec4 col0; void main() { gl_Position = ipos; uv0 = itex0; col0 = icol0; } )"; static const char PASSTHROUGH_GEOMETRY_SHADER_SOURCE[] = R"( layout(triangles) in; layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out; layout(location = 0) in vec3 in_uv0[]; layout(location = 1) in vec4 in_col0[]; layout(location = 0) out vec3 out_uv0; layout(location = 1) out vec4 out_col0; void main() { for (int j = 0; j < EFB_LAYERS; j++) { for (int i = 0; i < 3; i++) { gl_Layer = j; gl_Position = gl_in[i].gl_Position; out_uv0 = vec3(in_uv0[i].xy, float(j)); out_col0 = in_col0[i]; EmitVertex(); } EndPrimitive(); } } )"; static const char SCREEN_QUAD_VERTEX_SHADER_SOURCE[] = R"( layout(location = 0) out vec3 uv0; void main() { /* * id &1 &2 clamp(*2-1) * 0 0,0 0,0 -1,-1 TL * 1 1,0 1,0 1,-1 TR * 2 0,2 0,1 -1,1 BL * 3 1,2 1,1 1,1 BR */ vec2 rawpos = vec2(float(gl_VertexID & 1), clamp(float(gl_VertexID & 2), 0.0f, 1.0f)); gl_Position = vec4(rawpos * 2.0f - 1.0f, 0.0f, 1.0f); uv0 = vec3(rawpos, 0.0f); } )"; static const char SCREEN_QUAD_GEOMETRY_SHADER_SOURCE[] = R"( layout(triangles) in; layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out; layout(location = 0) in vec3 in_uv0[]; layout(location = 0) out vec3 out_uv0; void main() { for (int j = 0; j < EFB_LAYERS; j++) { for (int i = 0; i < 3; i++) { gl_Layer = j; gl_Position = gl_in[i].gl_Position; out_uv0 = vec3(in_uv0[i].xy, float(j)); EmitVertex(); } EndPrimitive(); } } )"; std::string header = GetUtilityShaderHeader(); m_screen_quad_vertex_shader = Util::CompileAndCreateVertexShader(header + SCREEN_QUAD_VERTEX_SHADER_SOURCE); m_passthrough_vertex_shader = Util::CompileAndCreateVertexShader(header + PASSTHROUGH_VERTEX_SHADER_SOURCE); if (m_screen_quad_vertex_shader == VK_NULL_HANDLE || m_passthrough_vertex_shader == VK_NULL_HANDLE) { return false; } if (g_ActiveConfig.iStereoMode != STEREO_OFF && g_vulkan_context->SupportsGeometryShaders()) { m_screen_quad_geometry_shader = Util::CompileAndCreateGeometryShader(header + SCREEN_QUAD_GEOMETRY_SHADER_SOURCE); m_passthrough_geometry_shader = Util::CompileAndCreateGeometryShader(header + PASSTHROUGH_GEOMETRY_SHADER_SOURCE); if (m_screen_quad_geometry_shader == VK_NULL_HANDLE || m_passthrough_geometry_shader == VK_NULL_HANDLE) { return false; } } return true; } void ObjectCache::DestroySharedShaders() { auto DestroyShader = [this](VkShaderModule& shader) { if (shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr); shader = VK_NULL_HANDLE; } }; DestroyShader(m_screen_quad_vertex_shader); DestroyShader(m_passthrough_vertex_shader); DestroyShader(m_screen_quad_geometry_shader); DestroyShader(m_passthrough_geometry_shader); } }