// Copyright 2015 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "Common/BitSet.h" #include "Common/CPUDetect.h" #include "Common/Intrinsics.h" #include "Common/JitRegister.h" #include "Common/x64ABI.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexLoaderX64.h" using namespace Gen; static const X64Reg src_reg = ABI_PARAM1; static const X64Reg dst_reg = ABI_PARAM2; static const X64Reg scratch1 = RAX; static const X64Reg scratch2 = ABI_PARAM3; static const X64Reg scratch3 = ABI_PARAM4; static const X64Reg count_reg = R10; static const X64Reg skipped_reg = R11; VertexLoaderX64::VertexLoaderX64(const TVtxDesc& vtx_desc, const VAT& vtx_att) : VertexLoaderBase(vtx_desc, vtx_att) { if (!IsInitialized()) return; AllocCodeSpace(4096); ClearCodeSpace(); GenerateVertexLoader(); WriteProtect(); std::string name; AppendToString(&name); JitRegister::Register(region, GetCodePtr(), name.c_str()); } OpArg VertexLoaderX64::GetVertexAddr(int array, u64 attribute) { OpArg data = MDisp(src_reg, m_src_ofs); if (attribute & MASK_INDEXED) { if (attribute == INDEX8) { MOVZX(64, 8, scratch1, data); m_src_ofs += 1; } else { MOV(16, R(scratch1), data); m_src_ofs += 2; BSWAP(16, scratch1); MOVZX(64, 16, scratch1, R(scratch1)); } if (array == ARRAY_POSITION) { CMP(attribute == INDEX8 ? 8 : 16, R(scratch1), Imm8(-1)); m_skip_vertex = J_CC(CC_E, true); } // TODO: Move cached_arraybases into CPState and use MDisp() relative to a constant register loaded with &g_main_cp_state. IMUL(32, scratch1, M(&g_main_cp_state.array_strides[array])); MOV(64, R(scratch2), M(&VertexLoaderManager::cached_arraybases[array])); return MRegSum(scratch1, scratch2); } else { return data; } } int VertexLoaderX64::ReadVertex(OpArg data, u64 attribute, int format, int count_in, int count_out, bool dequantize, u8 scaling_exponent, AttributeFormat* native_format) { static const __m128i shuffle_lut[4][3] = { {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF00L), // 1x u8 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L), // 2x u8 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L)}, // 3x u8 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00FFFFFFL), // 1x s8 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL), // 2x s8 _mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL)}, // 3x s8 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0001L), // 1x u16 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L), // 2x u16 _mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L)}, // 3x u16 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x0001FFFFL), // 1x s16 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL), // 2x s16 _mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL)}, // 3x s16 }; static const __m128 scale_factors[32] = { _mm_set_ps1(1./(1u<< 0)), _mm_set_ps1(1./(1u<< 1)), _mm_set_ps1(1./(1u<< 2)), _mm_set_ps1(1./(1u<< 3)), _mm_set_ps1(1./(1u<< 4)), _mm_set_ps1(1./(1u<< 5)), _mm_set_ps1(1./(1u<< 6)), _mm_set_ps1(1./(1u<< 7)), _mm_set_ps1(1./(1u<< 8)), _mm_set_ps1(1./(1u<< 9)), _mm_set_ps1(1./(1u<<10)), _mm_set_ps1(1./(1u<<11)), _mm_set_ps1(1./(1u<<12)), _mm_set_ps1(1./(1u<<13)), _mm_set_ps1(1./(1u<<14)), _mm_set_ps1(1./(1u<<15)), _mm_set_ps1(1./(1u<<16)), _mm_set_ps1(1./(1u<<17)), _mm_set_ps1(1./(1u<<18)), _mm_set_ps1(1./(1u<<19)), _mm_set_ps1(1./(1u<<20)), _mm_set_ps1(1./(1u<<21)), _mm_set_ps1(1./(1u<<22)), _mm_set_ps1(1./(1u<<23)), _mm_set_ps1(1./(1u<<24)), _mm_set_ps1(1./(1u<<25)), _mm_set_ps1(1./(1u<<26)), _mm_set_ps1(1./(1u<<27)), _mm_set_ps1(1./(1u<<28)), _mm_set_ps1(1./(1u<<29)), _mm_set_ps1(1./(1u<<30)), _mm_set_ps1(1./(1u<<31)), }; X64Reg coords = XMM0; int elem_size = 1 << (format / 2); int load_bytes = elem_size * count_in; OpArg dest = MDisp(dst_reg, m_dst_ofs); native_format->components = count_out; native_format->enable = true; native_format->offset = m_dst_ofs; native_format->type = VAR_FLOAT; native_format->integer = false; m_dst_ofs += sizeof(float) * count_out; if (attribute == DIRECT) m_src_ofs += load_bytes; if (format == FORMAT_FLOAT) { // Floats don't need to be scaled or converted, // so we can just load/swap/store them directly // and return early. for (int i = 0; i < count_in; i++) { LoadAndSwap(32, scratch3, data); MOV(32, dest, R(scratch3)); data.AddMemOffset(sizeof(float)); dest.AddMemOffset(sizeof(float)); } return load_bytes; } if (cpu_info.bSSSE3) { if (load_bytes > 8) MOVDQU(coords, data); else if (load_bytes > 4) MOVQ_xmm(coords, data); else MOVD_xmm(coords, data); PSHUFB(coords, M(&shuffle_lut[format][count_in - 1])); // Sign-extend. if (format == FORMAT_BYTE) PSRAD(coords, 24); if (format == FORMAT_SHORT) PSRAD(coords, 16); } else { // SSE2 X64Reg temp = XMM1; switch (format) { case FORMAT_UBYTE: MOVD_xmm(coords, data); PXOR(temp, R(temp)); PUNPCKLBW(coords, R(temp)); PUNPCKLWD(coords, R(temp)); break; case FORMAT_BYTE: MOVD_xmm(coords, data); PUNPCKLBW(coords, R(coords)); PUNPCKLWD(coords, R(coords)); PSRAD(coords, 24); break; case FORMAT_USHORT: case FORMAT_SHORT: switch (count_in) { case 1: LoadAndSwap(32, scratch3, data); MOVD_xmm(coords, R(scratch3)); // ......X. break; case 2: LoadAndSwap(32, scratch3, data); MOVD_xmm(coords, R(scratch3)); // ......XY PSHUFLW(coords, R(coords), 0x24); // ....Y.X. break; case 3: LoadAndSwap(64, scratch3, data); MOVQ_xmm(coords, R(scratch3)); // ....XYZ. PUNPCKLQDQ(coords, R(coords)); // ..Z.XYZ. PSHUFLW(coords, R(coords), 0xAC); // ..Z.Y.X. break; } if (format == FORMAT_SHORT) PSRAD(coords, 16); else PSRLD(coords, 16); break; } } CVTDQ2PS(coords, R(coords)); if (dequantize && scaling_exponent) MULPS(coords, M(&scale_factors[scaling_exponent])); switch (count_out) { case 1: MOVSS(dest, coords); break; case 2: MOVLPS(dest, coords); break; case 3: MOVUPS(dest, coords); break; } return load_bytes; } void VertexLoaderX64::ReadColor(OpArg data, u64 attribute, int format) { int load_bytes = 0; switch (format) { case FORMAT_24B_888: case FORMAT_32B_888x: case FORMAT_32B_8888: MOV(32, R(scratch1), data); if (format != FORMAT_32B_8888) OR(32, R(scratch1), Imm32(0xFF000000)); MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1)); load_bytes = 3 + (format != FORMAT_24B_888); break; case FORMAT_16B_565: // RRRRRGGG GGGBBBBB // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR LoadAndSwap(16, scratch1, data); if (cpu_info.bBMI1 && cpu_info.bBMI2) { MOV(32, R(scratch2), Imm32(0x07C3F7C0)); PDEP(32, scratch3, scratch1, R(scratch2)); MOV(32, R(scratch2), Imm32(0xF8FCF800)); PDEP(32, scratch1, scratch1, R(scratch2)); ANDN(32, scratch2, scratch2, R(scratch3)); OR(32, R(scratch1), R(scratch2)); } else { MOV(32, R(scratch3), R(scratch1)); SHL(32, R(scratch1), Imm8(16)); AND(32, R(scratch1), Imm32(0xF8000000)); MOV(32, R(scratch2), R(scratch3)); SHL(32, R(scratch2), Imm8(13)); AND(32, R(scratch2), Imm32(0x00FC0000)); OR(32, R(scratch1), R(scratch2)); SHL(32, R(scratch3), Imm8(11)); AND(32, R(scratch3), Imm32(0x0000F800)); OR(32, R(scratch1), R(scratch3)); MOV(32, R(scratch2), R(scratch1)); SHR(32, R(scratch1), Imm8(5)); AND(32, R(scratch1), Imm32(0x07000700)); OR(32, R(scratch1), R(scratch2)); SHR(32, R(scratch2), Imm8(6)); AND(32, R(scratch2), Imm32(0x00030000)); OR(32, R(scratch1), R(scratch2)); } OR(32, R(scratch1), Imm32(0x000000FF)); SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1); load_bytes = 2; break; case FORMAT_16B_4444: // RRRRGGGG BBBBAAAA // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR LoadAndSwap(16, scratch1, data); if (cpu_info.bBMI2) { MOV(32, R(scratch3), Imm32(0x0F0F0F0F)); PDEP(32, scratch2, scratch1, R(scratch3)); MOV(32, R(scratch3), Imm32(0xF0F0F0F0)); PDEP(32, scratch1, scratch1, R(scratch3)); } else { MOV(32, R(scratch3), R(scratch1)); SHL(32, R(scratch1), Imm8(12)); AND(32, R(scratch1), Imm32(0x0F000000)); MOV(32, R(scratch2), R(scratch1)); MOV(32, R(scratch1), R(scratch3)); SHL(32, R(scratch1), Imm8(8)); AND(32, R(scratch1), Imm32(0x000F0000)); OR(32, R(scratch2), R(scratch1)); MOV(32, R(scratch1), R(scratch3)); SHL(32, R(scratch1), Imm8(4)); AND(32, R(scratch1), Imm32(0x00000F00)); OR(32, R(scratch2), R(scratch1)); AND(32, R(scratch3), Imm8(0x0F)); OR(32, R(scratch2), R(scratch3)); MOV(32, R(scratch1), R(scratch2)); SHL(32, R(scratch1), Imm8(4)); } OR(32, R(scratch1), R(scratch2)); SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1); load_bytes = 2; break; case FORMAT_24B_6666: // RRRRRRGG GGGGBBBB BBAAAAAA // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap LoadAndSwap(32, scratch1, data); if (cpu_info.bBMI2) { MOV(32, R(scratch2), Imm32(0xFCFCFCFC)); PDEP(32, scratch1, scratch1, R(scratch2)); MOV(32, R(scratch2), R(scratch1)); } else { MOV(32, R(scratch3), R(scratch1)); SHL(32, R(scratch1), Imm8(8)); AND(32, R(scratch1), Imm32(0xFC000000)); MOV(32, R(scratch2), R(scratch1)); MOV(32, R(scratch1), R(scratch3)); SHL(32, R(scratch1), Imm8(6)); AND(32, R(scratch1), Imm32(0x00FC0000)); OR(32, R(scratch2), R(scratch1)); MOV(32, R(scratch1), R(scratch3)); SHL(32, R(scratch1), Imm8(4)); AND(32, R(scratch1), Imm32(0x0000FC00)); OR(32, R(scratch2), R(scratch1)); SHL(32, R(scratch3), Imm8(2)); AND(32, R(scratch3), Imm32(0x000000FC)); OR(32, R(scratch2), R(scratch3)); MOV(32, R(scratch1), R(scratch2)); } SHR(32, R(scratch1), Imm8(6)); AND(32, R(scratch1), Imm32(0x03030303)); OR(32, R(scratch1), R(scratch2)); SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1); load_bytes = 3; break; } if (attribute == DIRECT) m_src_ofs += load_bytes; } void VertexLoaderX64::GenerateVertexLoader() { BitSet32 xmm_regs; xmm_regs[XMM0+16] = true; xmm_regs[XMM1+16] = !cpu_info.bSSSE3; ABI_PushRegistersAndAdjustStack(xmm_regs, 8); // Backup count since we're going to count it down. PUSH(32, R(ABI_PARAM3)); // ABI_PARAM3 is one of the lower registers, so free it for scratch2. MOV(32, R(count_reg), R(ABI_PARAM3)); if (m_VtxDesc.Position & MASK_INDEXED) XOR(32, R(skipped_reg), R(skipped_reg)); // TODO: load constants into registers outside the main loop const u8* loop_start = GetCodePtr(); if (m_VtxDesc.PosMatIdx) { MOVZX(32, 8, scratch1, MDisp(src_reg, m_src_ofs)); AND(32, R(scratch1), Imm8(0x3F)); MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1)); m_native_components |= VB_HAS_POSMTXIDX; m_native_vtx_decl.posmtx.components = 4; m_native_vtx_decl.posmtx.enable = true; m_native_vtx_decl.posmtx.offset = m_dst_ofs; m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE; m_native_vtx_decl.posmtx.integer = true; m_src_ofs += sizeof(u8); m_dst_ofs += sizeof(u32); } u32 texmatidx_ofs[8]; const u64 tm[8] = { m_VtxDesc.Tex0MatIdx, m_VtxDesc.Tex1MatIdx, m_VtxDesc.Tex2MatIdx, m_VtxDesc.Tex3MatIdx, m_VtxDesc.Tex4MatIdx, m_VtxDesc.Tex5MatIdx, m_VtxDesc.Tex6MatIdx, m_VtxDesc.Tex7MatIdx, }; for (int i = 0; i < 8; i++) { if (tm[i]) texmatidx_ofs[i] = m_src_ofs++; } OpArg data = GetVertexAddr(ARRAY_POSITION, m_VtxDesc.Position); int pos_elements = 2 + m_VtxAttr.PosElements; ReadVertex(data, m_VtxDesc.Position, m_VtxAttr.PosFormat, pos_elements, pos_elements, m_VtxAttr.ByteDequant, m_VtxAttr.PosFrac, &m_native_vtx_decl.position); if (m_VtxDesc.Normal) { static const u8 map[8] = { 7, 6, 15, 14 }; u8 scaling_exponent = map[m_VtxAttr.NormalFormat]; for (int i = 0; i < (m_VtxAttr.NormalElements ? 3 : 1); i++) { if (!i || m_VtxAttr.NormalIndex3) { data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.Normal); int elem_size = 1 << (m_VtxAttr.NormalFormat / 2); data.AddMemOffset(i * elem_size * 3); } data.AddMemOffset(ReadVertex(data, m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3, true, scaling_exponent, &m_native_vtx_decl.normals[i])); } m_native_components |= VB_HAS_NRM0; if (m_VtxAttr.NormalElements) m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2; } const u64 col[2] = { m_VtxDesc.Color0, m_VtxDesc.Color1 }; for (int i = 0; i < 2; i++) { if (col[i]) { data = GetVertexAddr(ARRAY_COLOR + i, col[i]); ReadColor(data, col[i], m_VtxAttr.color[i].Comp); m_native_components |= VB_HAS_COL0 << i; m_native_vtx_decl.colors[i].components = 4; m_native_vtx_decl.colors[i].enable = true; m_native_vtx_decl.colors[i].offset = m_dst_ofs; m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE; m_native_vtx_decl.colors[i].integer = false; m_dst_ofs += 4; } } const u64 tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord, }; for (int i = 0; i < 8; i++) { int elements = m_VtxAttr.texCoord[i].Elements + 1; if (tc[i]) { data = GetVertexAddr(ARRAY_TEXCOORD0 + i, tc[i]); u8 scaling_exponent = m_VtxAttr.texCoord[i].Frac; ReadVertex(data, tc[i], m_VtxAttr.texCoord[i].Format, elements, tm[i] ? 2 : elements, m_VtxAttr.ByteDequant, scaling_exponent, &m_native_vtx_decl.texcoords[i]); m_native_components |= VB_HAS_UV0 << i; } if (tm[i]) { m_native_components |= VB_HAS_TEXMTXIDX0 << i; m_native_vtx_decl.texcoords[i].components = 3; m_native_vtx_decl.texcoords[i].enable = true; m_native_vtx_decl.texcoords[i].type = VAR_FLOAT; m_native_vtx_decl.texcoords[i].integer = false; MOVZX(64, 8, scratch1, MDisp(src_reg, texmatidx_ofs[i])); if (tc[i]) { CVTSI2SS(XMM0, R(scratch1)); MOVSS(MDisp(dst_reg, m_dst_ofs), XMM0); m_dst_ofs += sizeof(float); } else { m_native_vtx_decl.texcoords[i].offset = m_dst_ofs; PXOR(XMM0, R(XMM0)); CVTSI2SS(XMM0, R(scratch1)); SHUFPS(XMM0, R(XMM0), 0x45); // 000X -> 0X00 MOVUPS(MDisp(dst_reg, m_dst_ofs), XMM0); m_dst_ofs += sizeof(float) * 3; } } } // Prepare for the next vertex. ADD(64, R(dst_reg), Imm32(m_dst_ofs)); const u8* cont = GetCodePtr(); ADD(64, R(src_reg), Imm32(m_src_ofs)); SUB(32, R(count_reg), Imm8(1)); J_CC(CC_NZ, loop_start); // Get the original count. POP(32, R(ABI_RETURN)); ABI_PopRegistersAndAdjustStack(xmm_regs, 8); if (m_VtxDesc.Position & MASK_INDEXED) { SUB(32, R(ABI_RETURN), R(skipped_reg)); RET(); SetJumpTarget(m_skip_vertex); ADD(32, R(skipped_reg), Imm8(1)); JMP(cont); } else { RET(); } m_VertexSize = m_src_ofs; m_native_vtx_decl.stride = m_dst_ofs; } int VertexLoaderX64::RunVertices(DataReader src, DataReader dst, int count) { m_numLoadedVertices += count; return ((int (*)(u8* src, u8* dst, int count))region)(src.GetPointer(), dst.GetPointer(), count); }