// Copyright (C) 2003-2009 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include "gdsp_interface.h" #include "gdsp_interpreter.h" extern u16 dsp_swap16(u16 x); // The hardware adpcm decoder :) s16 ADPCM_Step(u32& _rSamplePos, u32 _BaseAddress) { s16* pCoefTable = (s16*)&gdsp_ifx_regs[DSP_COEF_A1_0]; if (((_rSamplePos) & 15) == 0) { gdsp_ifx_regs[DSP_PRED_SCALE] = g_dspInitialize.pARAM_Read_U8((_rSamplePos & ~15) >> 1); _rSamplePos += 2; } int scale = 1 << (gdsp_ifx_regs[DSP_PRED_SCALE] & 0xF); int coef_idx = gdsp_ifx_regs[DSP_PRED_SCALE] >> 4; s32 coef1 = pCoefTable[coef_idx * 2 + 0]; s32 coef2 = pCoefTable[coef_idx * 2 + 1]; int temp = (_rSamplePos & 1) ? (g_dspInitialize.pARAM_Read_U8(_rSamplePos >> 1) & 0xF) : (g_dspInitialize.pARAM_Read_U8(_rSamplePos >> 1) >> 4); if (temp >= 8) temp -= 16; // 0x400 = 0.5 in 11-bit fixed point int val = (scale * temp) + ((0x400 + coef1 * (s16)gdsp_ifx_regs[DSP_YN1] + coef2 * (s16)gdsp_ifx_regs[DSP_YN2]) >> 11); // Clamp values. if (val > 0x7FFF) val = 0x7FFF; else if (val < -0x7FFF) val = -0x7FFF; gdsp_ifx_regs[DSP_YN2] = gdsp_ifx_regs[DSP_YN1]; gdsp_ifx_regs[DSP_YN1] = val; _rSamplePos++; // The advanced interpolation (linear, polyphase,...) is done by the UCode, so we don't // need to bother with it here. return val; } u16 dsp_read_aram() { // u32 BaseAddress = (gdsp_ifx_regs[DSP_ACSAH] << 16) | gdsp_ifx_regs[DSP_ACSAL]; u32 EndAddress = (gdsp_ifx_regs[DSP_ACEAH] << 16) | gdsp_ifx_regs[DSP_ACEAL]; u32 Address = (gdsp_ifx_regs[DSP_ACCAH] << 16) | gdsp_ifx_regs[DSP_ACCAL]; u16 val; // lets the "hardware" decode switch (gdsp_ifx_regs[DSP_FORMAT]) { case 0x00: val = ADPCM_Step(Address, EndAddress); break; case 0x0A: val = (g_dspInitialize.pARAM_Read_U8(Address) << 8) | g_dspInitialize.pARAM_Read_U8(Address + 1); gdsp_ifx_regs[DSP_YN2] = gdsp_ifx_regs[DSP_YN1]; gdsp_ifx_regs[DSP_YN1] = val; Address += 2; break; default: val = (g_dspInitialize.pARAM_Read_U8(Address) << 8) | g_dspInitialize.pARAM_Read_U8(Address + 1); Address += 2; ERROR_LOG(DSPHLE, "Unknown DSP Format %i", gdsp_ifx_regs[DSP_FORMAT]); break; } // TODO: Take ifx GAIN into account. // check for loop if (Address > EndAddress) { Address = (gdsp_ifx_regs[DSP_ACSAH] << 16) | gdsp_ifx_regs[DSP_ACSAL]; gdsp_generate_exception(3); gdsp_generate_exception(5); // Somehow, YN1 and YN2 must be initialized with their "loop" values, so yeah, // it seems likely that we should raise an exception to let the DSP program do that, // at least if DSP_FORMAT == 0x0A. } gdsp_ifx_regs[DSP_ACCAH] = Address >> 16; gdsp_ifx_regs[DSP_ACCAL] = Address & 0xffff; return(val); }