// Copyright (C) 2003-2009 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // This queue solution is temporary. I'll implement something more efficient later. #include // System #include "Thread.h" // Common #include "Mixer.h" #include "FixedSizeQueue.h" #include "AudioCommon.h" int CMixer::Mix(short *samples, int numSamples) { if (! samples) { Premix(NULL, 0); return 0; } // silence memset(samples, 0, numSamples * 2 * sizeof(short)); if (g_dspInitialize.pEmulatorState) { if (*g_dspInitialize.pEmulatorState != 0) return 0; } // first get the DTK Music if (m_EnableDTKMusic) { g_dspInitialize.pGetAudioStreaming(samples, numSamples); } Premix(samples, numSamples); int count = 0; push_sync.Enter(); while (m_queueSize > queue_minlength && count < numSamples * 2) { int x = samples[count]; x += sample_queue.front(); if (x > 32767) x = 32767; if (x < -32767) x = -32767; samples[count++] = x; sample_queue.pop(); x = samples[count]; x += sample_queue.front(); if (x > 32767) x = 32767; if (x < -32767) x = -32767; samples[count++] = x; sample_queue.pop(); m_queueSize-=2; } push_sync.Leave(); return count; } void CMixer::PushSamples(short *samples, int num_stereo_samples, int core_sample_rate) { push_sync.Enter(); if (m_queueSize == 0) { m_queueSize = queue_minlength; for (int i = 0; i < queue_minlength; i++) sample_queue.push((s16)0); } push_sync.Leave(); static int PV1l=0,PV2l=0,PV3l=0,PV4l=0; static int PV1r=0,PV2r=0,PV3r=0,PV4r=0; static int acc=0; #ifdef _WIN32 if (GetAsyncKeyState(VK_TAB)) return; #endif // Write Other Audio if (!m_throttle) return; // ----------------------------------------------------------------------- // The auto throttle function. This loop will put a ceiling on the CPU MHz. // ŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻŻ /* This is only needed for non-AX sound, currently directly streamed and DTK sound. For AX we call SoundStream::Update in AXTask() for example. */ while (m_queueSize > queue_maxlength / 2) { // Urgh. if (g_dspInitialize.pEmulatorState) { if (*g_dspInitialize.pEmulatorState != 0) return; } soundStream->Update(); Common::YieldCPU(); } // ----------------------------------------------------------------------- push_sync.Enter(); while (num_stereo_samples) { acc += core_sample_rate; while (num_stereo_samples && (acc >= 48000)) { PV4l=PV3l; PV3l=PV2l; PV2l=PV1l; PV1l=*(samples++); //32bit processing PV4r=PV3r; PV3r=PV2r; PV2r=PV1r; PV1r=*(samples++); //32bit processing num_stereo_samples--; acc-=48000; } // defaults to nearest s32 DataL = PV1l; s32 DataR = PV1r; if (m_mode == 1) { //linear DataL = PV1l + ((PV2l - PV1l)*acc)/48000; DataR = PV1r + ((PV2r - PV1r)*acc)/48000; } else if (m_mode == 2) {//cubic s32 a0l = PV1l - PV2l - PV4l + PV3l; s32 a0r = PV1r - PV2r - PV4r + PV3r; s32 a1l = PV4l - PV3l - a0l; s32 a1r = PV4r - PV3r - a0r; s32 a2l = PV1l - PV4l; s32 a2r = PV1r - PV4r; s32 a3l = PV2l; s32 a3r = PV2r; s32 t0l = ((a0l )*acc)/48000; s32 t0r = ((a0r )*acc)/48000; s32 t1l = ((t0l+a1l)*acc)/48000; s32 t1r = ((t0r+a1r)*acc)/48000; s32 t2l = ((t1l+a2l)*acc)/48000; s32 t2r = ((t1r+a2r)*acc)/48000; s32 t3l = ((t2l+a3l)); s32 t3r = ((t2r+a3r)); DataL = t3l; DataR = t3r; } int l = DataL, r = DataR; if (l < -32767) l = -32767; if (r < -32767) r = -32767; if (l > 32767) l = 32767; if (r > 32767) r = 32767; sample_queue.push(l); sample_queue.push(r); m_queueSize += 2; } push_sync.Leave(); }