// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/Renderer.h" #include #include #include #include #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Core/ConfigManager.h" #include "VideoBackends/Vulkan/BoundingBox.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/RasterFont.h" #include "VideoBackends/Vulkan/StagingTexture2D.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/SwapChain.h" #include "VideoBackends/Vulkan/TextureCache.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoConfig.h" namespace Vulkan { Renderer::Renderer(std::unique_ptr swap_chain) : m_swap_chain(std::move(swap_chain)) { g_Config.bRunning = true; UpdateActiveConfig(); // Set to something invalid, forcing all states to be re-initialized. for (size_t i = 0; i < m_sampler_states.size(); i++) m_sampler_states[i].bits = std::numeric_limits::max(); // These have to be initialized before FramebufferManager is created. // If running surfaceless, assume a window size of MAX_XFB_{WIDTH,HEIGHT}. FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH); FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT); s_backbuffer_width = m_swap_chain ? m_swap_chain->GetWidth() : MAX_XFB_WIDTH; s_backbuffer_height = m_swap_chain ? m_swap_chain->GetHeight() : MAX_XFB_HEIGHT; s_last_efb_scale = g_ActiveConfig.iEFBScale; UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); CalculateTargetSize(s_backbuffer_width, s_backbuffer_height); PixelShaderManager::SetEfbScaleChanged(); } Renderer::~Renderer() { g_Config.bRunning = false; UpdateActiveConfig(); DestroyScreenshotResources(); DestroyShaders(); DestroySemaphores(); } bool Renderer::Initialize(FramebufferManager* framebuffer_mgr) { m_framebuffer_mgr = framebuffer_mgr; m_state_tracker = std::make_unique(); BindEFBToStateTracker(); if (!CreateSemaphores()) { PanicAlert("Failed to create semaphores."); return false; } if (!CompileShaders()) { PanicAlert("Failed to compile shaders."); return false; } m_raster_font = std::make_unique(); if (!m_raster_font->Initialize()) { PanicAlert("Failed to initialize raster font."); return false; } m_bounding_box = std::make_unique(); if (!m_bounding_box->Initialize()) { PanicAlert("Failed to initialize bounding box."); return false; } if (g_vulkan_context->SupportsBoundingBox()) { // Bind bounding box to state tracker m_state_tracker->SetBBoxBuffer(m_bounding_box->GetGPUBuffer(), m_bounding_box->GetGPUBufferOffset(), m_bounding_box->GetGPUBufferSize()); } // Various initialization routines will have executed commands on the command buffer. // Execute what we have done before beginning the first frame. g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); g_command_buffer_mgr->SubmitCommandBuffer(false); BeginFrame(); return true; } bool Renderer::CreateSemaphores() { // Create two semaphores, one that is triggered when the swapchain buffer is ready, another after // submit and before present VkSemaphoreCreateInfo semaphore_info = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0 // VkSemaphoreCreateFlags flags }; VkResult res; if ((res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &m_image_available_semaphore)) != VK_SUCCESS || (res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &m_rendering_finished_semaphore)) != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: "); return false; } return true; } void Renderer::DestroySemaphores() { if (m_image_available_semaphore) { vkDestroySemaphore(g_vulkan_context->GetDevice(), m_image_available_semaphore, nullptr); m_image_available_semaphore = VK_NULL_HANDLE; } if (m_rendering_finished_semaphore) { vkDestroySemaphore(g_vulkan_context->GetDevice(), m_rendering_finished_semaphore, nullptr); m_rendering_finished_semaphore = VK_NULL_HANDLE; } } void Renderer::RenderText(const std::string& text, int left, int top, u32 color) { u32 backbuffer_width = m_swap_chain->GetWidth(); u32 backbuffer_height = m_swap_chain->GetHeight(); m_raster_font->PrintMultiLineText(m_swap_chain->GetRenderPass(), text, left * 2.0f / static_cast(backbuffer_width) - 1, 1 - top * 2.0f / static_cast(backbuffer_height), backbuffer_width, backbuffer_height, color); } u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { if (type == PEEK_COLOR) { u32 color = m_framebuffer_mgr->PeekEFBColor(m_state_tracker.get(), x, y); // a little-endian value is expected to be returned color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000)); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { color |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) { return color; // GX_READ_NONE } else if (alpha_read_mode.ReadMode == 1) { return color | 0xFF000000; // GX_READ_FF } else /*if(alpha_read_mode.ReadMode == 0)*/ { return color & 0x00FFFFFF; // GX_READ_00 } } else // if (type == PEEK_Z) { // Depth buffer is inverted for improved precision near far plane float depth = 1.0f - m_framebuffer_mgr->PeekEFBDepth(m_state_tracker.get(), x, y); u32 ret = 0; if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = MathUtil::Clamp(static_cast(depth * 65536.0f), 0, 0xFFFF); } else { ret = MathUtil::Clamp(static_cast(depth * 16777216.0f), 0, 0xFFFFFF); } return ret; } } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { if (type == POKE_COLOR) { for (size_t i = 0; i < num_points; i++) { // Convert to expected format (BGRA->RGBA) // TODO: Check alpha, depending on mode? const EfbPokeData& point = points[i]; u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) | ((point.data << 16) & 0xFF0000)); m_framebuffer_mgr->PokeEFBColor(m_state_tracker.get(), point.x, point.y, color); } } else // if (type == POKE_Z) { for (size_t i = 0; i < num_points; i++) { // Convert to floating-point depth. const EfbPokeData& point = points[i]; float depth = (1.0f - float(point.data & 0xFFFFFF) / 16777216.0f); m_framebuffer_mgr->PokeEFBDepth(m_state_tracker.get(), point.x, point.y, depth); } } } u16 Renderer::BBoxRead(int index) { s32 value = m_bounding_box->Get(m_state_tracker.get(), static_cast(index)); // Here we get the min/max value of the truncated position of the upscaled framebuffer. // So we have to correct them to the unscaled EFB sizes. if (index < 2) { // left/right value = value * EFB_WIDTH / s_target_width; } else { // up/down value = value * EFB_HEIGHT / s_target_height; } // fix max values to describe the outer border if (index & 1) value++; return static_cast(value); } void Renderer::BBoxWrite(int index, u16 value) { s32 scaled_value = static_cast(value); // fix max values to describe the outer border if (index & 1) scaled_value--; // scale to internal resolution if (index < 2) { // left/right scaled_value = scaled_value * s_target_width / EFB_WIDTH; } else { // up/down scaled_value = scaled_value * s_target_height / EFB_HEIGHT; } m_bounding_box->Set(m_state_tracker.get(), static_cast(index), scaled_value); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } void Renderer::BeginFrame() { // Activate a new command list, and restore state ready for the next draw g_command_buffer_mgr->ActivateCommandBuffer(); // Ensure that the state tracker rebinds everything, and allocates a new set // of descriptors out of the next pool. m_state_tracker->InvalidateDescriptorSets(); m_state_tracker->SetPendingRebind(); } void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable, bool z_enable, u32 color, u32 z) { // Native -> EFB coordinates TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc); VkRect2D target_vk_rc = { {target_rc.left, target_rc.top}, {static_cast(target_rc.GetWidth()), static_cast(target_rc.GetHeight())}}; // Convert RGBA8 -> floating-point values. VkClearValue clear_color_value = {}; VkClearValue clear_depth_value = {}; clear_color_value.color.float32[0] = static_cast((color >> 16) & 0xFF) / 255.0f; clear_color_value.color.float32[1] = static_cast((color >> 8) & 0xFF) / 255.0f; clear_color_value.color.float32[2] = static_cast((color >> 0) & 0xFF) / 255.0f; clear_color_value.color.float32[3] = static_cast((color >> 24) & 0xFF) / 255.0f; clear_depth_value.depthStencil.depth = (1.0f - (static_cast(z & 0xFFFFFF) / 16777216.0f)); // Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha // channel to 0xFF. This hopefully allows us to use the fast path in most cases. if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 || bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 || bpmem.zcontrol.pixel_format == PEControl::Z24) { // Force alpha writes, and set the color to 0xFF. alpha_enable = true; color |= 0xFF000000; } // If we're not in a render pass (start of the frame), we can use a clear render pass // to discard the data, rather than loading and then clearing. bool use_clear_render_pass = (color_enable && alpha_enable && z_enable); if (m_state_tracker->InRenderPass()) { // Prefer not to end a render pass just to do a clear. use_clear_render_pass = false; } // Fastest path: Use a render pass to clear the buffers. if (use_clear_render_pass) { VkClearValue clear_values[2] = {clear_color_value, clear_depth_value}; m_state_tracker->BeginClearRenderPass(target_vk_rc, clear_values); return; } // Fast path: Use vkCmdClearAttachments to clear the buffers within a render path // We can't use this when preserving alpha but clearing color. { VkClearAttachment clear_attachments[2]; uint32_t num_clear_attachments = 0; if (color_enable && alpha_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_color_value; num_clear_attachments++; color_enable = false; alpha_enable = false; } if (z_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_depth_value; num_clear_attachments++; z_enable = false; } if (num_clear_attachments > 0) { VkClearRect clear_rect = {target_vk_rc, 0, m_framebuffer_mgr->GetEFBLayers()}; if (!m_state_tracker->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { m_state_tracker->EndClearRenderPass(); } m_state_tracker->BeginRenderPass(); vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments, clear_attachments, 1, &clear_rect); } } // Anything left over for the slow path? if (!color_enable && !alpha_enable && !z_enable) return; // Clearing must occur within a render pass. if (!m_state_tracker->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { m_state_tracker->EndClearRenderPass(); } m_state_tracker->BeginRenderPass(); m_state_tracker->SetPendingRebind(); // Mask away the appropriate colors and use a shader BlendState blend_state = Util::GetNoBlendingBlendState(); u32 write_mask = 0; if (color_enable) write_mask |= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT; if (alpha_enable) write_mask |= VK_COLOR_COMPONENT_A_BIT; blend_state.write_mask = write_mask; DepthStencilState depth_state = Util::GetNoDepthTestingDepthStencilState(); depth_state.test_enable = z_enable ? VK_TRUE : VK_FALSE; depth_state.write_enable = z_enable ? VK_TRUE : VK_FALSE; depth_state.compare_op = VK_COMPARE_OP_ALWAYS; RasterizationState rs_state = Util::GetNoCullRasterizationState(); rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE; rs_state.samples = m_framebuffer_mgr->GetEFBSamples(); // No need to start a new render pass, but we do need to restore viewport state UtilityShaderDraw draw( g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetStandardPipelineLayout(), m_framebuffer_mgr->GetEFBLoadRenderPass(), g_object_cache->GetPassthroughVertexShader(), g_object_cache->GetPassthroughGeometryShader(), m_clear_fragment_shader); draw.SetRasterizationState(rs_state); draw.SetDepthStencilState(depth_state); draw.SetBlendState(blend_state); draw.DrawColoredQuad(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight(), clear_color_value.color.float32[0], clear_color_value.color.float32[1], clear_color_value.color.float32[2], clear_color_value.color.float32[3], clear_depth_value.depthStencil.depth); } void Renderer::ReinterpretPixelData(unsigned int convtype) { m_state_tracker->EndRenderPass(); m_state_tracker->SetPendingRebind(); m_framebuffer_mgr->ReinterpretPixelData(convtype); // EFB framebuffer has now changed, so update accordingly. BindEFBToStateTracker(); } void Renderer::SwapImpl(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, const EFBRectangle& rc, float gamma) { // Flush any pending EFB pokes. m_framebuffer_mgr->FlushEFBPokes(m_state_tracker.get()); // End the current render pass. m_state_tracker->EndRenderPass(); m_state_tracker->OnEndFrame(); // Scale the source rectangle to the selected internal resolution. TargetRectangle source_rc = Renderer::ConvertEFBRectangle(rc); // Transition the EFB render target to a shader resource. VkRect2D src_region = {{0, 0}, {m_framebuffer_mgr->GetEFBWidth(), m_framebuffer_mgr->GetEFBHeight()}}; Texture2D* efb_color_texture = m_framebuffer_mgr->ResolveEFBColorTexture(m_state_tracker.get(), src_region); efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); // Draw to the screenshot buffer if needed. if (IsFrameDumping() && DrawScreenshot(source_rc, efb_color_texture)) { DumpFrameData(reinterpret_cast(m_screenshot_readback_texture->GetMapPointer()), static_cast(m_screenshot_render_texture->GetWidth()), static_cast(m_screenshot_render_texture->GetHeight()), static_cast(m_screenshot_readback_texture->GetRowStride())); FinishFrameData(); } // Restore the EFB color texture to color attachment ready for rendering the next frame. m_framebuffer_mgr->GetEFBColorTexture()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Ensure the worker thread is not still submitting a previous command buffer. // In other words, the last frame has been submitted (otherwise the next call would // be a race, as the image may not have been consumed yet). g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); // Draw to the screen if we have a swap chain. if (m_swap_chain) { DrawScreen(source_rc, efb_color_texture); // Submit the current command buffer, signaling rendering finished semaphore when it's done // Because this final command buffer is rendering to the swap chain, we need to wait for // the available semaphore to be signaled before executing the buffer. This final submission // can happen off-thread in the background while we're preparing the next frame. g_command_buffer_mgr->SubmitCommandBuffer( true, m_image_available_semaphore, m_rendering_finished_semaphore, m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex()); } else { // No swap chain, just execute command buffer. g_command_buffer_mgr->SubmitCommandBuffer(true); } // NOTE: It is important that no rendering calls are made to the EFB between submitting the // (now-previous) frame and after the below config checks are completed. If the target size // changes, as the resize methods to not defer the destruction of the framebuffer, the current // command buffer will contain references to a now non-existent framebuffer. // Prep for the next frame (get command buffer ready) before doing anything else. BeginFrame(); // Determine what (if anything) has changed in the config. CheckForConfigChanges(); // Handle host window resizes. CheckForSurfaceChange(); // Handle output size changes from the guest. // There is a downside to doing this here is that if the game changes its XFB source area, // the changes will be delayed by one frame. For the moment it has to be done here because // this can cause a target size change, which would result in a black frame if done earlier. CheckForTargetResize(fb_width, fb_stride, fb_height); // Clean up stale textures. TextureCacheBase::Cleanup(frameCount); } void Renderer::DrawScreen(const TargetRectangle& src_rect, const Texture2D* src_tex) { // Grab the next image from the swap chain in preparation for drawing the window. VkResult res = m_swap_chain->AcquireNextImage(m_image_available_semaphore); if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR) { // Window has been resized. Update the swap chain and try again. ResizeSwapChain(); res = m_swap_chain->AcquireNextImage(m_image_available_semaphore); } if (res != VK_SUCCESS) PanicAlert("Failed to grab image from swap chain"); // Transition from undefined (or present src, but it can be substituted) to // color attachment ready for writing. These transitions must occur outside // a render pass, unless the render pass declares a self-dependency. Texture2D* backbuffer = m_swap_chain->GetCurrentTexture(); backbuffer->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED); backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Blit the EFB to the back buffer (Swap chain) UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetStandardPipelineLayout(), m_swap_chain->GetRenderPass(), g_object_cache->GetPassthroughVertexShader(), VK_NULL_HANDLE, m_blit_fragment_shader); // Begin the present render pass VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; VkRect2D target_region = {{0, 0}, {backbuffer->GetWidth(), backbuffer->GetHeight()}}; draw.BeginRenderPass(m_swap_chain->GetCurrentFramebuffer(), target_region, &clear_value); // Copy EFB -> backbuffer const TargetRectangle& dst_rect = GetTargetRectangle(); BlitScreen(m_swap_chain->GetRenderPass(), dst_rect, src_rect, src_tex, true); // OSD stuff Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0, backbuffer->GetWidth(), backbuffer->GetHeight()); DrawDebugText(); // Do our OSD callbacks OSD::DoCallbacks(OSD::CallbackType::OnFrame); OSD::DrawMessages(); // End drawing to backbuffer draw.EndRenderPass(); // Transition the backbuffer to PRESENT_SRC to ensure all commands drawing // to it have finished before present. backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_PRESENT_SRC_KHR); } bool Renderer::DrawScreenshot(const TargetRectangle& src_rect, const Texture2D* src_tex) { // Draw the screenshot to an image containing only the active screen area, removing any // borders as a result of the game rendering in a different aspect ratio. TargetRectangle target_rect = GetTargetRectangle(); target_rect.right = target_rect.GetWidth(); target_rect.bottom = target_rect.GetHeight(); target_rect.left = 0; target_rect.top = 0; u32 width = std::max(1u, static_cast(target_rect.GetWidth())); u32 height = std::max(1u, static_cast(target_rect.GetHeight())); if (!ResizeScreenshotBuffer(width, height)) return false; VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; VkClearRect clear_rect = {{{0, 0}, {width, height}}, 0, 1}; VkClearAttachment clear_attachment = {VK_IMAGE_ASPECT_COLOR_BIT, 0, clear_value}; VkRenderPassBeginInfo info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, m_framebuffer_mgr->GetColorCopyForReadbackRenderPass(), m_screenshot_framebuffer, {{0, 0}, {width, height}}, 1, &clear_value}; vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &info, VK_SUBPASS_CONTENTS_INLINE); vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), 1, &clear_attachment, 1, &clear_rect); BlitScreen(m_framebuffer_mgr->GetColorCopyForReadbackRenderPass(), target_rect, src_rect, src_tex, true); vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer()); // Copy to the readback texture. m_screenshot_readback_texture->CopyFromImage( g_command_buffer_mgr->GetCurrentCommandBuffer(), m_screenshot_render_texture->GetImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, width, height, 0, 0); // Wait for the command buffer to complete. g_command_buffer_mgr->ExecuteCommandBuffer(false, true); return true; } void Renderer::BlitScreen(VkRenderPass render_pass, const TargetRectangle& dst_rect, const TargetRectangle& src_rect, const Texture2D* src_tex, bool linear_filter) { // We could potentially use vkCmdBlitImage here. VkSampler sampler = linear_filter ? g_object_cache->GetLinearSampler() : g_object_cache->GetPointSampler(); // Set up common data UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetStandardPipelineLayout(), render_pass, g_object_cache->GetPassthroughVertexShader(), VK_NULL_HANDLE, m_blit_fragment_shader); draw.SetPSSampler(0, src_tex->GetView(), sampler); if (g_ActiveConfig.iStereoMode == STEREO_SBS || g_ActiveConfig.iStereoMode == STEREO_TAB) { TargetRectangle left_rect; TargetRectangle right_rect; if (g_ActiveConfig.iStereoMode == STEREO_TAB) ConvertStereoRectangle(dst_rect, right_rect, left_rect); else ConvertStereoRectangle(dst_rect, left_rect, right_rect); draw.DrawQuad(left_rect.left, left_rect.top, left_rect.GetWidth(), left_rect.GetHeight(), src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(), src_tex->GetWidth(), src_tex->GetHeight()); draw.DrawQuad(right_rect.left, right_rect.top, right_rect.GetWidth(), right_rect.GetHeight(), src_rect.left, src_rect.top, 1, src_rect.GetWidth(), src_rect.GetHeight(), src_tex->GetWidth(), src_tex->GetHeight()); } else { draw.DrawQuad(dst_rect.left, dst_rect.top, dst_rect.GetWidth(), dst_rect.GetHeight(), src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(), src_tex->GetWidth(), src_tex->GetHeight()); } } bool Renderer::ResizeScreenshotBuffer(u32 new_width, u32 new_height) { if (m_screenshot_render_texture && m_screenshot_render_texture->GetWidth() == new_width && m_screenshot_render_texture->GetHeight() == new_height) { return true; } if (m_screenshot_framebuffer != VK_NULL_HANDLE) { vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_screenshot_framebuffer, nullptr); m_screenshot_framebuffer = VK_NULL_HANDLE; } m_screenshot_render_texture = Texture2D::Create(new_width, new_height, 1, 1, EFB_COLOR_TEXTURE_FORMAT, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); m_screenshot_readback_texture = StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, new_width, new_height, EFB_COLOR_TEXTURE_FORMAT); if (!m_screenshot_render_texture || !m_screenshot_readback_texture || !m_screenshot_readback_texture->Map()) { WARN_LOG(VIDEO, "Failed to resize screenshot render texture"); m_screenshot_render_texture.reset(); m_screenshot_readback_texture.reset(); return false; } VkImageView attachment = m_screenshot_render_texture->GetView(); VkFramebufferCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; info.renderPass = m_framebuffer_mgr->GetColorCopyForReadbackRenderPass(); info.attachmentCount = 1; info.pAttachments = &attachment; info.width = new_width; info.height = new_height; info.layers = 1; VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &info, nullptr, &m_screenshot_framebuffer); if (res != VK_SUCCESS) { WARN_LOG(VIDEO, "Failed to resize screenshot framebuffer"); m_screenshot_render_texture.reset(); m_screenshot_readback_texture.reset(); return false; } // Render pass expects texture is in transfer src to start with. m_screenshot_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); return true; } void Renderer::DestroyScreenshotResources() { if (m_screenshot_framebuffer != VK_NULL_HANDLE) { vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_screenshot_framebuffer, nullptr); m_screenshot_framebuffer = VK_NULL_HANDLE; } m_screenshot_render_texture.reset(); m_screenshot_readback_texture.reset(); } void Renderer::CheckForTargetResize(u32 fb_width, u32 fb_stride, u32 fb_height) { if (FramebufferManagerBase::LastXfbWidth() == fb_stride && FramebufferManagerBase::LastXfbHeight() == fb_height) { return; } u32 new_width = (fb_stride < 1 || fb_stride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fb_stride; u32 new_height = (fb_height < 1 || fb_height > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fb_height; FramebufferManagerBase::SetLastXfbWidth(new_width); FramebufferManagerBase::SetLastXfbHeight(new_height); // Changing the XFB source area will likely change the final drawing rectangle. UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); if (CalculateTargetSize(s_backbuffer_width, s_backbuffer_height)) { PixelShaderManager::SetEfbScaleChanged(); ResizeEFBTextures(); } // This call is needed for auto-resizing to work. SetWindowSize(static_cast(fb_stride), static_cast(fb_height)); } void Renderer::CheckForSurfaceChange() { if (!s_surface_needs_change.IsSet()) return; u32 old_width = m_swap_chain ? m_swap_chain->GetWidth() : 0; u32 old_height = m_swap_chain ? m_swap_chain->GetHeight() : 0; // Fast path, if the surface handle is the same, the window has just been resized. if (m_swap_chain && s_new_surface_handle == m_swap_chain->GetNativeHandle()) { INFO_LOG(VIDEO, "Detected window resize."); ResizeSwapChain(); // Notify the main thread we are done. s_surface_needs_change.Clear(); s_new_surface_handle = nullptr; s_surface_changed.Set(); } else { // Wait for the GPU to catch up since we're going to destroy the swap chain. g_command_buffer_mgr->WaitForGPUIdle(); // Did we previously have a swap chain? if (m_swap_chain) { if (!s_new_surface_handle) { // If there is no surface now, destroy the swap chain. m_swap_chain.reset(); } else { // Recreate the surface. If this fails we're in trouble. if (!m_swap_chain->RecreateSurface(s_new_surface_handle)) PanicAlert("Failed to recreate Vulkan surface. Cannot continue."); } } else { // Previously had no swap chain. So create one. VkSurfaceKHR surface = SwapChain::CreateVulkanSurface(g_vulkan_context->GetVulkanInstance(), s_new_surface_handle); if (surface != VK_NULL_HANDLE) { m_swap_chain = SwapChain::Create(s_new_surface_handle, surface, g_ActiveConfig.IsVSync()); if (!m_swap_chain) PanicAlert("Failed to create swap chain."); } else { PanicAlert("Failed to create surface."); } } // Notify calling thread. s_surface_needs_change.Clear(); s_new_surface_handle = nullptr; s_surface_changed.Set(); } if (m_swap_chain) { // Handle case where the dimensions are now different if (old_width != m_swap_chain->GetWidth() || old_height != m_swap_chain->GetHeight()) OnSwapChainResized(); } } void Renderer::CheckForConfigChanges() { // Save the video config so we can compare against to determine which settings have changed. int old_multisamples = g_ActiveConfig.iMultisamples; int old_anisotropy = g_ActiveConfig.iMaxAnisotropy; int old_stereo_mode = g_ActiveConfig.iStereoMode; int old_aspect_ratio = g_ActiveConfig.iAspectRatio; bool old_force_filtering = g_ActiveConfig.bForceFiltering; bool old_ssaa = g_ActiveConfig.bSSAA; // Copy g_Config to g_ActiveConfig. // NOTE: This can potentially race with the UI thread, however if it does, the changes will be // delayed until the next time CheckForConfigChanges is called. UpdateActiveConfig(); // Determine which (if any) settings have changed. bool msaa_changed = old_multisamples != g_ActiveConfig.iMultisamples; bool ssaa_changed = old_ssaa != g_ActiveConfig.bSSAA; bool anisotropy_changed = old_anisotropy != g_ActiveConfig.iMaxAnisotropy; bool force_texture_filtering_changed = old_force_filtering != g_ActiveConfig.bForceFiltering; bool stereo_changed = old_stereo_mode != g_ActiveConfig.iStereoMode; bool efb_scale_changed = s_last_efb_scale != g_ActiveConfig.iEFBScale; bool aspect_changed = old_aspect_ratio != g_ActiveConfig.iAspectRatio; // Update texture cache settings with any changed options. TextureCache::OnConfigChanged(g_ActiveConfig); // Handle internal resolution changes. if (efb_scale_changed) s_last_efb_scale = g_ActiveConfig.iEFBScale; // If the aspect ratio is changed, this changes the area that the game is drawn to. if (aspect_changed) UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); if (efb_scale_changed || aspect_changed) { if (CalculateTargetSize(s_backbuffer_width, s_backbuffer_height)) ResizeEFBTextures(); } // MSAA samples changed, we need to recreate the EFB render pass. // If the stereoscopy mode changed, we need to recreate the buffers as well. if (msaa_changed || stereo_changed) { g_command_buffer_mgr->WaitForGPUIdle(); m_framebuffer_mgr->RecreateRenderPass(); m_framebuffer_mgr->ResizeEFBTextures(); BindEFBToStateTracker(); } // SSAA changed on/off, we can leave the buffers/render pass, but have to recompile shaders. // Changing stereoscopy from off<->on also requires shaders to be recompiled. if (msaa_changed || ssaa_changed || stereo_changed) { g_command_buffer_mgr->WaitForGPUIdle(); RecompileShaders(); m_framebuffer_mgr->RecompileShaders(); g_object_cache->ClearPipelineCache(); } // For vsync, we need to change the present mode, which means recreating the swap chain. if (m_swap_chain && g_ActiveConfig.IsVSync() != m_swap_chain->IsVSyncEnabled()) { g_command_buffer_mgr->WaitForGPUIdle(); m_swap_chain->SetVSync(g_ActiveConfig.IsVSync()); } // Wipe sampler cache if force texture filtering or anisotropy changes. if (anisotropy_changed || force_texture_filtering_changed) ResetSamplerStates(); } void Renderer::OnSwapChainResized() { s_backbuffer_width = m_swap_chain->GetWidth(); s_backbuffer_height = m_swap_chain->GetHeight(); UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); if (CalculateTargetSize(s_backbuffer_width, s_backbuffer_height)) { PixelShaderManager::SetEfbScaleChanged(); ResizeEFBTextures(); } } void Renderer::BindEFBToStateTracker() { // Update framebuffer in state tracker VkRect2D framebuffer_size = { {0, 0}, {m_framebuffer_mgr->GetEFBWidth(), m_framebuffer_mgr->GetEFBHeight()}}; m_state_tracker->SetRenderPass(m_framebuffer_mgr->GetEFBLoadRenderPass(), m_framebuffer_mgr->GetEFBClearRenderPass()); m_state_tracker->SetFramebuffer(m_framebuffer_mgr->GetEFBFramebuffer(), framebuffer_size); // Update rasterization state with MSAA info RasterizationState rs_state = {}; rs_state.bits = m_state_tracker->GetRasterizationState().bits; rs_state.samples = m_framebuffer_mgr->GetEFBSamples(); rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE; m_state_tracker->SetRasterizationState(rs_state); } void Renderer::ResizeEFBTextures() { // Ensure the GPU is finished with the current EFB textures. g_command_buffer_mgr->WaitForGPUIdle(); m_framebuffer_mgr->ResizeEFBTextures(); BindEFBToStateTracker(); // Viewport and scissor rect have to be reset since they will be scaled differently. SetViewport(); BPFunctions::SetScissor(); } void Renderer::ResizeSwapChain() { // The worker thread may still be submitting a present on this swap chain. g_command_buffer_mgr->WaitForGPUIdle(); // It's now safe to resize the swap chain. if (!m_swap_chain->ResizeSwapChain()) PanicAlert("Failed to resize swap chain."); OnSwapChainResized(); } void Renderer::ApplyState(bool bUseDstAlpha) { } void Renderer::ResetAPIState() { // End the EFB render pass if active m_state_tracker->EndRenderPass(); } void Renderer::RestoreAPIState() { // Instruct the state tracker to re-bind everything before the next draw m_state_tracker->SetPendingRebind(); } void Renderer::SetGenerationMode() { RasterizationState new_rs_state = {}; new_rs_state.bits = m_state_tracker->GetRasterizationState().bits; switch (bpmem.genMode.cullmode) { case GenMode::CULL_NONE: new_rs_state.cull_mode = VK_CULL_MODE_NONE; break; case GenMode::CULL_BACK: new_rs_state.cull_mode = VK_CULL_MODE_BACK_BIT; break; case GenMode::CULL_FRONT: new_rs_state.cull_mode = VK_CULL_MODE_FRONT_BIT; break; case GenMode::CULL_ALL: new_rs_state.cull_mode = VK_CULL_MODE_FRONT_AND_BACK; break; default: new_rs_state.cull_mode = VK_CULL_MODE_NONE; break; } m_state_tracker->SetRasterizationState(new_rs_state); } void Renderer::SetDepthMode() { DepthStencilState new_ds_state = {}; new_ds_state.test_enable = bpmem.zmode.testenable ? VK_TRUE : VK_FALSE; new_ds_state.write_enable = bpmem.zmode.updateenable ? VK_TRUE : VK_FALSE; // Inverted depth, hence these are swapped switch (bpmem.zmode.func) { case ZMode::NEVER: new_ds_state.compare_op = VK_COMPARE_OP_NEVER; break; case ZMode::LESS: new_ds_state.compare_op = VK_COMPARE_OP_GREATER; break; case ZMode::EQUAL: new_ds_state.compare_op = VK_COMPARE_OP_EQUAL; break; case ZMode::LEQUAL: new_ds_state.compare_op = VK_COMPARE_OP_GREATER_OR_EQUAL; break; case ZMode::GREATER: new_ds_state.compare_op = VK_COMPARE_OP_LESS; break; case ZMode::NEQUAL: new_ds_state.compare_op = VK_COMPARE_OP_NOT_EQUAL; break; case ZMode::GEQUAL: new_ds_state.compare_op = VK_COMPARE_OP_LESS_OR_EQUAL; break; case ZMode::ALWAYS: new_ds_state.compare_op = VK_COMPARE_OP_ALWAYS; break; default: new_ds_state.compare_op = VK_COMPARE_OP_ALWAYS; break; } m_state_tracker->SetDepthStencilState(new_ds_state); } void Renderer::SetColorMask() { u32 color_mask = 0; if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL) { if (bpmem.blendmode.alphaupdate && bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) color_mask |= VK_COLOR_COMPONENT_A_BIT; if (bpmem.blendmode.colorupdate) color_mask |= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT; } BlendState new_blend_state = {}; new_blend_state.bits = m_state_tracker->GetBlendState().bits; new_blend_state.write_mask = color_mask; m_state_tracker->SetBlendState(new_blend_state); } void Renderer::SetBlendMode(bool force_update) { BlendState new_blend_state = {}; new_blend_state.bits = m_state_tracker->GetBlendState().bits; // Fast path for blending disabled if (!bpmem.blendmode.blendenable) { new_blend_state.blend_enable = VK_FALSE; new_blend_state.blend_op = VK_BLEND_OP_ADD; new_blend_state.src_blend = VK_BLEND_FACTOR_ONE; new_blend_state.dst_blend = VK_BLEND_FACTOR_ZERO; new_blend_state.alpha_blend_op = VK_BLEND_OP_ADD; new_blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE; new_blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ZERO; m_state_tracker->SetBlendState(new_blend_state); return; } // Fast path for subtract blending else if (bpmem.blendmode.subtract) { new_blend_state.blend_enable = VK_TRUE; new_blend_state.blend_op = VK_BLEND_OP_REVERSE_SUBTRACT; new_blend_state.src_blend = VK_BLEND_FACTOR_ONE; new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE; new_blend_state.alpha_blend_op = VK_BLEND_OP_REVERSE_SUBTRACT; new_blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE; new_blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ONE; m_state_tracker->SetBlendState(new_blend_state); return; } // Our render target always uses an alpha channel, so we need to override the blend functions to // assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel. bool target_has_alpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; bool use_dst_alpha = bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha; bool use_dual_src = g_vulkan_context->SupportsDualSourceBlend(); new_blend_state.blend_enable = VK_TRUE; new_blend_state.blend_op = VK_BLEND_OP_ADD; switch (bpmem.blendmode.srcfactor) { case BlendMode::ZERO: new_blend_state.src_blend = VK_BLEND_FACTOR_ZERO; break; case BlendMode::ONE: new_blend_state.src_blend = VK_BLEND_FACTOR_ONE; break; case BlendMode::DSTCLR: new_blend_state.src_blend = VK_BLEND_FACTOR_DST_COLOR; break; case BlendMode::INVDSTCLR: new_blend_state.src_blend = VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; break; case BlendMode::SRCALPHA: new_blend_state.src_blend = use_dual_src ? VK_BLEND_FACTOR_SRC1_ALPHA : VK_BLEND_FACTOR_SRC_ALPHA; break; case BlendMode::INVSRCALPHA: new_blend_state.src_blend = use_dual_src ? VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA : VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; break; case BlendMode::DSTALPHA: new_blend_state.src_blend = target_has_alpha ? VK_BLEND_FACTOR_DST_ALPHA : VK_BLEND_FACTOR_ONE; break; case BlendMode::INVDSTALPHA: new_blend_state.src_blend = target_has_alpha ? VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA : VK_BLEND_FACTOR_ZERO; break; default: new_blend_state.src_blend = VK_BLEND_FACTOR_ONE; break; } switch (bpmem.blendmode.dstfactor) { case BlendMode::ZERO: new_blend_state.dst_blend = VK_BLEND_FACTOR_ZERO; break; case BlendMode::ONE: new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE; break; case BlendMode::SRCCLR: new_blend_state.dst_blend = VK_BLEND_FACTOR_SRC_COLOR; break; case BlendMode::INVSRCCLR: new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; break; case BlendMode::SRCALPHA: new_blend_state.dst_blend = use_dual_src ? VK_BLEND_FACTOR_SRC1_ALPHA : VK_BLEND_FACTOR_SRC_ALPHA; break; case BlendMode::INVSRCALPHA: new_blend_state.dst_blend = use_dual_src ? VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA : VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; break; case BlendMode::DSTALPHA: new_blend_state.dst_blend = target_has_alpha ? VK_BLEND_FACTOR_DST_ALPHA : VK_BLEND_FACTOR_ONE; break; case BlendMode::INVDSTALPHA: new_blend_state.dst_blend = target_has_alpha ? VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA : VK_BLEND_FACTOR_ZERO; break; default: new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE; break; } if (use_dst_alpha) { // Destination alpha sets 1*SRC new_blend_state.alpha_blend_op = VK_BLEND_OP_ADD; new_blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE; new_blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ZERO; } else { new_blend_state.alpha_blend_op = VK_BLEND_OP_ADD; new_blend_state.src_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.src_blend); new_blend_state.dst_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.dst_blend); } m_state_tracker->SetBlendState(new_blend_state); } void Renderer::SetLogicOpMode() { BlendState new_blend_state = {}; new_blend_state.bits = m_state_tracker->GetBlendState().bits; // Does our device support logic ops? bool logic_op_enable = bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable; if (g_vulkan_context->SupportsLogicOps()) { if (logic_op_enable) { static const std::array logic_ops = { {VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY, VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR, VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE, VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}}; new_blend_state.logic_op_enable = VK_TRUE; new_blend_state.logic_op = logic_ops[bpmem.blendmode.logicmode]; } else { new_blend_state.logic_op_enable = VK_FALSE; new_blend_state.logic_op = VK_LOGIC_OP_CLEAR; } m_state_tracker->SetBlendState(new_blend_state); } else { // No logic op support, approximate with blending instead. // This is by no means correct, but necessary for some devices. if (logic_op_enable) { struct LogicOpBlend { VkBlendFactor src_factor; VkBlendOp op; VkBlendFactor dst_factor; }; static const std::array logic_ops = { {{VK_BLEND_FACTOR_ZERO, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ZERO}, {VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ZERO}, {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_SUBTRACT, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR}, {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ZERO}, {VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_OP_REVERSE_SUBTRACT, VK_BLEND_FACTOR_ONE}, {VK_BLEND_FACTOR_ZERO, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE}, {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_MAX, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR}, {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE}, {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_MAX, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR}, {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_MAX, VK_BLEND_FACTOR_SRC_COLOR}, {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR}, {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR}, {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR}, {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE}, {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR}, {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE}}}; new_blend_state.blend_enable = VK_TRUE; new_blend_state.blend_op = logic_ops[bpmem.blendmode.logicmode].op; new_blend_state.src_blend = logic_ops[bpmem.blendmode.logicmode].src_factor; new_blend_state.dst_blend = logic_ops[bpmem.blendmode.logicmode].dst_factor; new_blend_state.alpha_blend_op = new_blend_state.blend_op; new_blend_state.src_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.src_blend); new_blend_state.dst_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.dst_blend); m_state_tracker->SetBlendState(new_blend_state); } else { // This is unfortunate. Since we clobber the blend state when enabling logic ops, // we have to call SetBlendMode again to restore the current blend state. SetBlendMode(true); return; } } } void Renderer::SetSamplerState(int stage, int texindex, bool custom_tex) { const FourTexUnits& tex = bpmem.tex[texindex]; const TexMode0& tm0 = tex.texMode0[stage]; const TexMode1& tm1 = tex.texMode1[stage]; SamplerState new_state = {}; if (g_ActiveConfig.bForceFiltering) { new_state.min_filter = VK_FILTER_LINEAR; new_state.mag_filter = VK_FILTER_LINEAR; new_state.mipmap_mode = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; } else { // Constants for these? new_state.min_filter = (tm0.min_filter & 4) != 0 ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; new_state.mipmap_mode = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; new_state.mag_filter = tm0.mag_filter != 0 ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; } // If mipmaps are disabled, clamp min/max lod new_state.max_lod = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? tm1.max_lod : 0; new_state.min_lod = std::min(new_state.max_lod.Value(), tm1.min_lod); new_state.lod_bias = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? tm0.lod_bias : 0; // Custom textures may have a greater number of mips if (custom_tex) new_state.max_lod = 255; // Address modes static const VkSamplerAddressMode address_modes[] = { VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT}; new_state.wrap_u = address_modes[tm0.wrap_s]; new_state.wrap_v = address_modes[tm0.wrap_t]; // Only use anisotropic filtering for textures that would be linearly filtered. new_state.enable_anisotropic_filtering = SamplerCommon::IsBpTexMode0PointFiltering(tm0) ? 0 : 1; // Skip lookup if the state hasn't changed. size_t bind_index = (texindex * 4) + stage; if (m_sampler_states[bind_index].bits == new_state.bits) return; // Look up new state and replace in state tracker. VkSampler sampler = g_object_cache->GetSampler(new_state); if (sampler == VK_NULL_HANDLE) { ERROR_LOG(VIDEO, "Failed to create sampler"); sampler = g_object_cache->GetPointSampler(); } m_state_tracker->SetSampler(bind_index, sampler); m_sampler_states[bind_index].bits = new_state.bits; } void Renderer::ResetSamplerStates() { // Ensure none of the sampler objects are in use. // This assumes that none of the samplers are in use on the command list currently being recorded. g_command_buffer_mgr->WaitForGPUIdle(); // Invalidate all sampler states, next draw will re-initialize them. for (size_t i = 0; i < m_sampler_states.size(); i++) { m_sampler_states[i].bits = std::numeric_limits::max(); m_state_tracker->SetSampler(i, g_object_cache->GetPointSampler()); } // Invalidate all sampler objects (some will be unused now). g_object_cache->ClearSamplerCache(); } void Renderer::SetDitherMode() { } void Renderer::SetInterlacingMode() { } void Renderer::SetScissorRect(const EFBRectangle& rc) { TargetRectangle target_rc = ConvertEFBRectangle(rc); VkRect2D scissor = { {target_rc.left, target_rc.top}, {static_cast(target_rc.GetWidth()), static_cast(target_rc.GetHeight())}}; m_state_tracker->SetScissor(scissor); } void Renderer::SetViewport() { int scissor_x_offset = bpmem.scissorOffset.x * 2; int scissor_y_offset = bpmem.scissorOffset.y * 2; float x = Renderer::EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_offset); float y = Renderer::EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_offset); float width = Renderer::EFBToScaledXf(2.0f * xfmem.viewport.wd); float height = Renderer::EFBToScaledYf(-2.0f * xfmem.viewport.ht); if (width < 0.0f) { x += width; width = -width; } if (height < 0.0f) { y += height; height = -height; } // If we do depth clipping and depth range in the vertex shader we only need to ensure // depth values don't exceed the maximum value supported by the console GPU. If not, // we simply clamp the near/far values themselves to the maximum value as done above. float min_depth, max_depth; if (g_ActiveConfig.backend_info.bSupportsDepthClamp) { min_depth = 1.0f - GX_MAX_DEPTH; max_depth = 1.0f; } else { float near_val = MathUtil::Clamp(xfmem.viewport.farZ - MathUtil::Clamp(xfmem.viewport.zRange, -16777216.0f, 16777216.0f), 0.0f, 16777215.0f) / 16777216.0f; float far_val = MathUtil::Clamp(xfmem.viewport.farZ, 0.0f, 16777215.0f) / 16777216.0f; min_depth = 1.0f - near_val; max_depth = 1.0f - far_val; } VkViewport viewport = {x, y, width, height, min_depth, max_depth}; m_state_tracker->SetViewport(viewport); } void Renderer::ChangeSurface(void* new_surface_handle) { // Called by the main thread when the window is resized. s_new_surface_handle = new_surface_handle; s_surface_needs_change.Set(); s_surface_changed.Set(); } void Renderer::RecompileShaders() { DestroyShaders(); if (!CompileShaders()) PanicAlert("Failed to recompile shaders."); } bool Renderer::CompileShaders() { static const char CLEAR_FRAGMENT_SHADER_SOURCE[] = R"( layout(location = 0) in float3 uv0; layout(location = 1) in float4 col0; layout(location = 0) out float4 ocol0; void main() { ocol0 = col0; } )"; static const char BLIT_FRAGMENT_SHADER_SOURCE[] = R"( layout(set = 1, binding = 0) uniform sampler2DArray samp0; layout(location = 0) in float3 uv0; layout(location = 1) in float4 col0; layout(location = 0) out float4 ocol0; void main() { ocol0 = float4(texture(samp0, uv0).xyz, 1.0); } )"; std::string header = g_object_cache->GetUtilityShaderHeader(); std::string source; source = header + CLEAR_FRAGMENT_SHADER_SOURCE; m_clear_fragment_shader = Util::CompileAndCreateFragmentShader(source); source = header + BLIT_FRAGMENT_SHADER_SOURCE; m_blit_fragment_shader = Util::CompileAndCreateFragmentShader(source); if (m_clear_fragment_shader == VK_NULL_HANDLE || m_blit_fragment_shader == VK_NULL_HANDLE) { return false; } return true; } void Renderer::DestroyShaders() { auto DestroyShader = [this](VkShaderModule& shader) { if (shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr); shader = VK_NULL_HANDLE; } }; DestroyShader(m_clear_fragment_shader); DestroyShader(m_blit_fragment_shader); } } // namespace Vulkan