// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/VertexLoaderManager.h" #include <algorithm> #include <iterator> #include <memory> #include <mutex> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Core/HW/Memmap.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoaderBase.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" namespace VertexLoaderManager { float position_cache[3][4]; // The counter added to the address of the array is 1, 2, or 3, but never zero. // So only index 1 - 3 are used. u32 position_matrix_index[4]; static NativeVertexFormatMap s_native_vertex_map; static NativeVertexFormat* s_current_vtx_fmt; u32 g_current_components; typedef std::unordered_map<VertexLoaderUID, std::unique_ptr<VertexLoaderBase>> VertexLoaderMap; static std::mutex s_vertex_loader_map_lock; static VertexLoaderMap s_vertex_loader_map; // TODO - change into array of pointers. Keep a map of all seen so far. u8* cached_arraybases[12]; void Init() { MarkAllDirty(); for (auto& map_entry : g_main_cp_state.vertex_loaders) map_entry = nullptr; for (auto& map_entry : g_preprocess_cp_state.vertex_loaders) map_entry = nullptr; SETSTAT(g_stats.num_vertex_loaders, 0); } void Clear() { std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock); s_vertex_loader_map.clear(); s_native_vertex_map.clear(); } void UpdateVertexArrayPointers() { // Anything to update? if (!g_main_cp_state.bases_dirty) return; // Some games such as Burnout 2 can put invalid addresses into // the array base registers. (see issue 8591) // But the vertex arrays with invalid addresses aren't actually enabled. // Note: Only array bases 0 through 11 are used by the Vertex loaders. // 12 through 15 are used for loading data into xfmem. for (int i = 0; i < 12; i++) { // Only update the array base if the vertex description states we are going to use it. if (g_main_cp_state.vtx_desc.GetVertexArrayStatus(i) & MASK_INDEXED) cached_arraybases[i] = Memory::GetPointer(g_main_cp_state.array_bases[i]); } g_main_cp_state.bases_dirty = false; } namespace { struct entry { std::string text; u64 num_verts; bool operator<(const entry& other) const { return num_verts > other.num_verts; } }; } // namespace std::string VertexLoadersToString() { std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock); std::vector<entry> entries; size_t total_size = 0; for (const auto& map_entry : s_vertex_loader_map) { entry e = {map_entry.second->ToString(), static_cast<u64>(map_entry.second->m_numLoadedVertices)}; total_size += e.text.size() + 1; entries.push_back(std::move(e)); } sort(entries.begin(), entries.end()); std::string dest; dest.reserve(total_size); for (const entry& entry : entries) { dest += entry.text; dest += '\n'; } return dest; } void MarkAllDirty() { g_main_cp_state.attr_dirty = BitSet32::AllTrue(8); g_preprocess_cp_state.attr_dirty = BitSet32::AllTrue(8); } NativeVertexFormat* GetOrCreateMatchingFormat(const PortableVertexDeclaration& decl) { auto iter = s_native_vertex_map.find(decl); if (iter == s_native_vertex_map.end()) { std::unique_ptr<NativeVertexFormat> fmt = g_renderer->CreateNativeVertexFormat(decl); auto ipair = s_native_vertex_map.emplace(decl, std::move(fmt)); iter = ipair.first; } return iter->second.get(); } NativeVertexFormat* GetUberVertexFormat(const PortableVertexDeclaration& decl) { // The padding in the structs can cause the memcmp() in the map to create duplicates. // Avoid this by initializing the padding to zero. PortableVertexDeclaration new_decl; std::memset(&new_decl, 0, sizeof(new_decl)); new_decl.stride = decl.stride; auto MakeDummyAttribute = [](AttributeFormat& attr, VarType type, int components, bool integer) { attr.type = type; attr.components = components; attr.offset = 0; attr.enable = true; attr.integer = integer; }; auto CopyAttribute = [](AttributeFormat& attr, const AttributeFormat& src) { attr.type = src.type; attr.components = src.components; attr.offset = src.offset; attr.enable = src.enable; attr.integer = src.integer; }; if (decl.position.enable) CopyAttribute(new_decl.position, decl.position); else MakeDummyAttribute(new_decl.position, VAR_FLOAT, 1, false); for (size_t i = 0; i < std::size(new_decl.normals); i++) { if (decl.normals[i].enable) CopyAttribute(new_decl.normals[i], decl.normals[i]); else MakeDummyAttribute(new_decl.normals[i], VAR_FLOAT, 1, false); } for (size_t i = 0; i < std::size(new_decl.colors); i++) { if (decl.colors[i].enable) CopyAttribute(new_decl.colors[i], decl.colors[i]); else MakeDummyAttribute(new_decl.colors[i], VAR_UNSIGNED_BYTE, 4, false); } for (size_t i = 0; i < std::size(new_decl.texcoords); i++) { if (decl.texcoords[i].enable) CopyAttribute(new_decl.texcoords[i], decl.texcoords[i]); else MakeDummyAttribute(new_decl.texcoords[i], VAR_FLOAT, 1, false); } if (decl.posmtx.enable) CopyAttribute(new_decl.posmtx, decl.posmtx); else MakeDummyAttribute(new_decl.posmtx, VAR_UNSIGNED_BYTE, 1, true); return GetOrCreateMatchingFormat(new_decl); } static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false) { CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state; state->last_id = vtx_attr_group; VertexLoaderBase* loader; if (state->attr_dirty[vtx_attr_group]) { // We are not allowed to create a native vertex format on preprocessing as this is on the wrong // thread bool check_for_native_format = !preprocess; VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]); std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock); VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid); if (iter != s_vertex_loader_map.end()) { loader = iter->second.get(); check_for_native_format &= !loader->m_native_vertex_format; } else { s_vertex_loader_map[uid] = VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]); loader = s_vertex_loader_map[uid].get(); INCSTAT(g_stats.num_vertex_loaders); } if (check_for_native_format) { // search for a cached native vertex format const PortableVertexDeclaration& format = loader->m_native_vtx_decl; std::unique_ptr<NativeVertexFormat>& native = s_native_vertex_map[format]; if (!native) native = g_renderer->CreateNativeVertexFormat(format); loader->m_native_vertex_format = native.get(); } state->vertex_loaders[vtx_attr_group] = loader; state->attr_dirty[vtx_attr_group] = false; } else { loader = state->vertex_loaders[vtx_attr_group]; } // Lookup pointers for any vertex arrays. if (!preprocess) UpdateVertexArrayPointers(); return loader; } int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bool is_preprocess) { if (!count) return 0; VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess); int size = count * loader->m_VertexSize; if ((int)src.size() < size) return -1; if (is_preprocess) return size; // If the native vertex format changed, force a flush. if (loader->m_native_vertex_format != s_current_vtx_fmt || loader->m_native_components != g_current_components) { g_vertex_manager->Flush(); } s_current_vtx_fmt = loader->m_native_vertex_format; g_current_components = loader->m_native_components; VertexShaderManager::SetVertexFormat(loader->m_native_components); // if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads. // They still need to go through vertex loading, because we need to calculate a zfreeze refrence // slope. bool cullall = (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5); DataReader dst = g_vertex_manager->PrepareForAdditionalData( primitive, count, loader->m_native_vtx_decl.stride, cullall); count = loader->RunVertices(src, dst, count); IndexGenerator::AddIndices(primitive, count); g_vertex_manager->FlushData(count, loader->m_native_vtx_decl.stride); ADDSTAT(g_stats.this_frame.num_prims, count); INCSTAT(g_stats.this_frame.num_primitive_joins); return size; } NativeVertexFormat* GetCurrentVertexFormat() { return s_current_vtx_fmt; } } // namespace VertexLoaderManager void LoadCPReg(u32 sub_cmd, u32 value, bool is_preprocess) { bool update_global_state = !is_preprocess; CPState* state = is_preprocess ? &g_preprocess_cp_state : &g_main_cp_state; switch (sub_cmd & 0xF0) { case 0x30: if (update_global_state) VertexShaderManager::SetTexMatrixChangedA(value); break; case 0x40: if (update_global_state) VertexShaderManager::SetTexMatrixChangedB(value); break; case 0x50: state->vtx_desc.Hex &= ~0x1FFFF; // keep the Upper bits state->vtx_desc.Hex |= value; state->attr_dirty = BitSet32::AllTrue(8); state->bases_dirty = true; break; case 0x60: state->vtx_desc.Hex &= 0x1FFFF; // keep the lower 17Bits state->vtx_desc.Hex |= (u64)value << 17; state->attr_dirty = BitSet32::AllTrue(8); state->bases_dirty = true; break; case 0x70: ASSERT((sub_cmd & 0x0F) < 8); state->vtx_attr[sub_cmd & 7].g0.Hex = value; state->attr_dirty[sub_cmd & 7] = true; break; case 0x80: ASSERT((sub_cmd & 0x0F) < 8); state->vtx_attr[sub_cmd & 7].g1.Hex = value; state->attr_dirty[sub_cmd & 7] = true; break; case 0x90: ASSERT((sub_cmd & 0x0F) < 8); state->vtx_attr[sub_cmd & 7].g2.Hex = value; state->attr_dirty[sub_cmd & 7] = true; break; // Pointers to vertex arrays in GC RAM case 0xA0: state->array_bases[sub_cmd & 0xF] = value & CommandProcessor::GetPhysicalAddressMask(); state->bases_dirty = true; break; case 0xB0: state->array_strides[sub_cmd & 0xF] = value & 0xFF; break; } } void FillCPMemoryArray(u32* memory) { memory[0x30] = g_main_cp_state.matrix_index_a.Hex; memory[0x40] = g_main_cp_state.matrix_index_b.Hex; memory[0x50] = (u32)g_main_cp_state.vtx_desc.Hex; memory[0x60] = (u32)(g_main_cp_state.vtx_desc.Hex >> 17); for (int i = 0; i < 8; ++i) { memory[0x70 + i] = g_main_cp_state.vtx_attr[i].g0.Hex; memory[0x80 + i] = g_main_cp_state.vtx_attr[i].g1.Hex; memory[0x90 + i] = g_main_cp_state.vtx_attr[i].g2.Hex; } for (int i = 0; i < 16; ++i) { memory[0xA0 + i] = g_main_cp_state.array_bases[i]; memory[0xB0 + i] = g_main_cp_state.array_strides[i]; } }