// // Copyright (C) 2017 Google, Inc. // Copyright (C) 2017 LunarG, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // #include "hlslParseHelper.h" #include "hlslScanContext.h" #include "hlslGrammar.h" #include "hlslAttributes.h" #include "../glslang/MachineIndependent/Scan.h" #include "../glslang/MachineIndependent/preprocessor/PpContext.h" #include "../glslang/OSDependent/osinclude.h" #include <algorithm> #include <functional> #include <cctype> #include <array> #include <set> namespace glslang { HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins, int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, TInfoSink& infoSink, const TString sourceEntryPointName, bool forwardCompatible, EShMessages messages) : TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, forwardCompatible, messages, &sourceEntryPointName), annotationNestingLevel(0), inputPatch(nullptr), nextInLocation(0), nextOutLocation(0), entryPointFunction(nullptr), entryPointFunctionBody(nullptr), gsStreamOutput(nullptr), clipDistanceOutput(nullptr), cullDistanceOutput(nullptr), clipDistanceInput(nullptr), cullDistanceInput(nullptr) { globalUniformDefaults.clear(); globalUniformDefaults.layoutMatrix = ElmRowMajor; globalUniformDefaults.layoutPacking = ElpStd140; globalBufferDefaults.clear(); globalBufferDefaults.layoutMatrix = ElmRowMajor; globalBufferDefaults.layoutPacking = ElpStd430; globalInputDefaults.clear(); globalOutputDefaults.clear(); clipSemanticNSizeIn.fill(0); cullSemanticNSizeIn.fill(0); clipSemanticNSizeOut.fill(0); cullSemanticNSizeOut.fill(0); // "Shaders in the transform // feedback capturing mode have an initial global default of // layout(xfb_buffer = 0) out;" if (language == EShLangVertex || language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry) globalOutputDefaults.layoutXfbBuffer = 0; if (language == EShLangGeometry) globalOutputDefaults.layoutStream = 0; if (spvVersion.spv == 0 || spvVersion.vulkan == 0) infoSink.info << "ERROR: HLSL currently only supported when requesting SPIR-V for Vulkan.\n"; } HlslParseContext::~HlslParseContext() { } void HlslParseContext::initializeExtensionBehavior() { TParseContextBase::initializeExtensionBehavior(); // HLSL allows #line by default. extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable; } void HlslParseContext::setLimits(const TBuiltInResource& r) { resources = r; intermediate.setLimits(resources); } // // Parse an array of strings using the parser in HlslRules. // // Returns true for successful acceptance of the shader, false if any errors. // bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) { currentScanner = &input; ppContext.setInput(input, versionWillBeError); HlslScanContext scanContext(*this, ppContext); HlslGrammar grammar(scanContext, *this); if (!grammar.parse()) { // Print a message formated such that if you click on the message it will take you right to // the line through most UIs. const glslang::TSourceLoc& sourceLoc = input.getSourceLoc(); infoSink.info << sourceLoc.name << "(" << sourceLoc.line << "): error at column " << sourceLoc.column << ", HLSL parsing failed.\n"; ++numErrors; return false; } finish(); return numErrors == 0; } // // Return true if this l-value node should be converted in some manner. // For instance: turning a load aggregate into a store in an l-value. // bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const { if (node == nullptr || node->getAsTyped() == nullptr) return false; const TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); const TIntermBinary* lhsAsBinary = node->getAsBinaryNode(); // If it's a swizzled/indexed aggregate, look at the left node instead. if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate(); if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad) return true; return false; } void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName, TTypeList* newTypeList) { newTypeList = nullptr; correctUniform(memberType.getQualifier()); if (memberType.isStruct()) { auto it = ioTypeMap.find(memberType.getStruct()); if (it != ioTypeMap.end() && it->second.uniform) newTypeList = it->second.uniform; } TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList); } // // Return a TLayoutFormat corresponding to the given texture type. // TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType) { if (txType.isStruct()) { // TODO: implement. error(loc, "unimplemented: structure type in image or buffer", "", ""); return ElfNone; } const int components = txType.getVectorSize(); const TBasicType txBasicType = txType.getBasicType(); const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat { if (intermediate.getNoStorageFormat()) return ElfNone; return components == 1 ? v1 : components == 2 ? v2 : v4; }; switch (txBasicType) { case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f); case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i); case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui); default: error(loc, "unknown basic type in image format", "", ""); return ElfNone; } } // // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. // // Returns true if there was an error. // bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) { if (shouldConvertLValue(node)) { // if we're writing to a texture, it must be an RW form. TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); if (!object->getType().getSampler().isImage()) { error(loc, "operator[] on a non-RW texture must be an r-value", "", ""); return true; } } // We tolerate samplers as l-values, even though they are nominally // illegal, because we expect a later optimization to eliminate them. if (node->getType().getBasicType() == EbtSampler) { intermediate.setNeedsLegalization(); return false; } // Let the base class check errors return TParseContextBase::lValueErrorCheck(loc, op, node); } // // This function handles l-value conversions and verifications. It uses, but is not synonymous // with lValueErrorCheck. That function accepts an l-value directly, while this one must be // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a // series of other image operations. // // Most things are passed through unmodified, except for error checking. // TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node) { if (node == nullptr) return nullptr; TIntermBinary* nodeAsBinary = node->getAsBinaryNode(); TIntermUnary* nodeAsUnary = node->getAsUnaryNode(); TIntermAggregate* sequence = nullptr; TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() : nodeAsBinary ? nodeAsBinary->getLeft() : nullptr; // Early bail out if there is no conversion to apply if (!shouldConvertLValue(lhs)) { if (lhs != nullptr) if (lValueErrorCheck(loc, op, lhs)) return nullptr; return node; } // *** If we get here, we're going to apply some conversion to an l-value. // Helper to create a load. const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) { TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad); loadOp->setLoc(loc); loadOp->getSequence().push_back(object); loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode())); loadOp->setType(derefType); sequence = intermediate.growAggregate(sequence, intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc), loc); }; // Helper to create a store. const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) { TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore); storeOp->getSequence().push_back(object); storeOp->getSequence().push_back(coord); storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp)); storeOp->setLoc(loc); storeOp->setType(TType(EbtVoid)); sequence = intermediate.growAggregate(sequence, storeOp); }; // Helper to create an assign. const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) { sequence = intermediate.growAggregate(sequence, intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()), loc); }; // Helper to complete sequence by adding trailing variable, so we evaluate to the right value. const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* { // Add a trailing use of the temp, so the sequence returns the proper value. sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp)); sequence->setOperator(EOpSequence); sequence->setLoc(loc); sequence->setType(derefType); return sequence; }; // Helper to add unary op const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) { sequence = intermediate.growAggregate(sequence, intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc, rhsTmp->getType()), loc); }; // Return true if swizzle or index writes all components of the given variable. const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool { if (swizzle == nullptr) // not a swizzle or index return true; // Track which components are being set. std::array<bool, 4> compIsSet; compIsSet.fill(false); const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion(); const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate(); // This could be either a direct index, or a swizzle. if (asConst) { compIsSet[asConst->getConstArray()[0].getIConst()] = true; } else if (asAggregate) { const TIntermSequence& seq = asAggregate->getSequence(); for (int comp=0; comp<int(seq.size()); ++comp) compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true; } else { assert(0); } // Return true if all components are being set by the index or swizzle return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(), [](bool isSet) { return isSet; } ); }; // Create swizzle matching input swizzle const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* { if (swizzle) return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType()); else return var; }; TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode(); TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate(); bool lhsIsSwizzle = false; // If it's a swizzled L-value, remember the swizzle, and use the LHS. if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) { lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate(); lhsIsSwizzle = true; } TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped(); const TSampler& texSampler = object->getType().getSampler(); TType objDerefType; getTextureReturnType(texSampler, objDerefType); if (nodeAsBinary) { TIntermTyped* rhs = nodeAsBinary->getRight(); const TOperator assignOp = nodeAsBinary->getOp(); bool isModifyOp = false; switch (assignOp) { case EOpAddAssign: case EOpSubAssign: case EOpMulAssign: case EOpVectorTimesMatrixAssign: case EOpVectorTimesScalarAssign: case EOpMatrixTimesScalarAssign: case EOpMatrixTimesMatrixAssign: case EOpDivAssign: case EOpModAssign: case EOpAndAssign: case EOpInclusiveOrAssign: case EOpExclusiveOrAssign: case EOpLeftShiftAssign: case EOpRightShiftAssign: isModifyOp = true; // fall through... case EOpAssign: { // Since this is an lvalue, we'll convert an image load to a sequence like this // (to still provide the value): // OpSequence // OpImageStore(object, lhs, rhs) // rhs // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS, // so we'll convert instead to this: // OpSequence // rhsTmp = rhs // OpImageStore(object, coord, rhsTmp) // rhsTmp // If this is a read-modify-write op, like +=, we issue: // OpSequence // coordtmp = load's param1 // rhsTmp = OpImageLoad(object, coordTmp) // rhsTmp op= rhs // OpImageStore(object, coordTmp, rhsTmp) // rhsTmp // // If the lvalue is swizzled, we apply that when writing the temp variable, like so: // ... // rhsTmp.some_swizzle = ... // For partial writes, an error is generated. TIntermSymbol* rhsTmp = rhs->getAsSymbolNode(); TIntermTyped* coordTmp = coord; if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) { rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType); // Partial updates not yet supported if (!writesAllComponents(rhsTmp, lhsAsBinary)) { error(loc, "unimplemented: partial image updates", "", ""); } // Assign storeTemp = rhs if (isModifyOp) { // We have to make a temp var for the coordinate, to avoid evaluating it twice. coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) } // rhsTmp op= rhs. makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs); } makeStore(object, coordTmp, rhsTmp); // add a store return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence } default: break; } } if (nodeAsUnary) { const TOperator assignOp = nodeAsUnary->getOp(); switch (assignOp) { case EOpPreIncrement: case EOpPreDecrement: { // We turn this into: // OpSequence // coordtmp = load's param1 // rhsTmp = OpImageLoad(object, coordTmp) // rhsTmp op // OpImageStore(object, coordTmp, rhsTmp) // rhsTmp TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType); TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) makeUnary(assignOp, rhsTmp); // op rhsTmp makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp) return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence } case EOpPostIncrement: case EOpPostDecrement: { // We turn this into: // OpSequence // coordtmp = load's param1 // rhsTmp1 = OpImageLoad(object, coordTmp) // rhsTmp2 = rhsTmp1 // rhsTmp2 op // OpImageStore(object, coordTmp, rhsTmp2) // rhsTmp1 (pre-op value) TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType); TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType); TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp) makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1 makeUnary(assignOp, rhsTmp2); // rhsTmp op makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2) return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence } default: break; } } if (lhs) if (lValueErrorCheck(loc, op, lhs)) return nullptr; return node; } void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens) { if (pragmaCallback) pragmaCallback(loc.line, tokens); if (tokens.size() == 0) return; // These pragmas are case insensitive in HLSL, so we'll compare in lower case. TVector<TString> lowerTokens = tokens; for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it) std::transform(it->begin(), it->end(), it->begin(), ::tolower); // Handle pack_matrix if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") { // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense. // Row major becomes column major and vice versa. if (lowerTokens[2] == "row_major") { globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor; } else if (lowerTokens[2] == "column_major") { globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor; } else { // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major) warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), ""); globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor; } return; } // Handle once if (lowerTokens[0] == "once") { warn(loc, "not implemented", "#pragma once", ""); return; } } // // Look at a '.' matrix selector string and change it into components // for a matrix. There are two types: // // _21 second row, first column (one based) // _m21 third row, second column (zero based) // // Returns true if there is no error. // bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows, TSwizzleSelectors<TMatrixSelector>& components) { int startPos[MaxSwizzleSelectors]; int numComps = 0; TString compString = fields; // Find where each component starts, // recording the first character position after the '_'. for (size_t c = 0; c < compString.size(); ++c) { if (compString[c] == '_') { if (numComps >= MaxSwizzleSelectors) { error(loc, "matrix component swizzle has too many components", compString.c_str(), ""); return false; } if (c > compString.size() - 3 || ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) { error(loc, "matrix component swizzle missing", compString.c_str(), ""); return false; } startPos[numComps++] = (int)c + 1; } } // Process each component for (int i = 0; i < numComps; ++i) { int pos = startPos[i]; int bias = -1; if (compString[pos] == 'm' || compString[pos] == 'M') { bias = 0; ++pos; } TMatrixSelector comp; comp.coord1 = compString[pos+0] - '0' + bias; comp.coord2 = compString[pos+1] - '0' + bias; if (comp.coord1 < 0 || comp.coord1 >= cols) { error(loc, "matrix row component out of range", compString.c_str(), ""); return false; } if (comp.coord2 < 0 || comp.coord2 >= rows) { error(loc, "matrix column component out of range", compString.c_str(), ""); return false; } components.push_back(comp); } return true; } // If the 'comps' express a column of a matrix, // return the column. Column means the first coords all match. // // Otherwise, return -1. // int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector) { int col = -1; // right number of comps? if (selector.size() != rows) return -1; // all comps in the same column? // rows in order? col = selector[0].coord1; for (int i = 0; i < rows; ++i) { if (col != selector[i].coord1) return -1; if (i != selector[i].coord2) return -1; } return col; } // // Handle seeing a variable identifier in the grammar. // TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string) { int thisDepth; TSymbol* symbol = symbolTable.find(*string, thisDepth); if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { error(loc, "expected symbol, not user-defined type", string->c_str(), ""); return nullptr; } // Error check for requiring specific extensions present. if (symbol && symbol->getNumExtensions()) requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str()); const TVariable* variable = nullptr; const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; TIntermTyped* node = nullptr; if (anon) { // It was a member of an anonymous container, which could be a 'this' structure. // Create a subtree for its dereference. if (thisDepth > 0) { variable = getImplicitThis(thisDepth); if (variable == nullptr) error(loc, "cannot access member variables (static member function?)", "this", ""); } if (variable == nullptr) variable = anon->getAnonContainer().getAsVariable(); TIntermTyped* container = intermediate.addSymbol(*variable, loc); TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); if (node->getType().hiddenMember()) error(loc, "member of nameless block was not redeclared", string->c_str(), ""); } else { // Not a member of an anonymous container. // The symbol table search was done in the lexical phase. // See if it was a variable. variable = symbol ? symbol->getAsVariable() : nullptr; if (variable) { if ((variable->getType().getBasicType() == EbtBlock || variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) { error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); variable = nullptr; } } else { if (symbol) error(loc, "variable name expected", string->c_str(), ""); } // Recovery, if it wasn't found or was not a variable. if (variable == nullptr) { error(loc, "unknown variable", string->c_str(), ""); variable = new TVariable(string, TType(EbtVoid)); } if (variable->getType().getQualifier().isFrontEndConstant()) node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); else node = intermediate.addSymbol(*variable, loc); } if (variable->getType().getQualifier().isIo()) intermediate.addIoAccessed(*string); return node; } // // Handle operator[] on any objects it applies to. Currently: // Textures // Buffers // TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) { // handle r-value operator[] on textures and images. l-values will be processed later. if (base->getType().getBasicType() == EbtSampler && !base->isArray()) { const TSampler& sampler = base->getType().getSampler(); if (sampler.isImage() || sampler.isTexture()) { if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) { // The first operator[] to a .mips[] sequence is the mip level. We'll remember it. mipsOperatorMipArg.back().mipLevel = index; return base; // next [] index is to the same base. } else { TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch); TType sampReturnType; getTextureReturnType(sampler, sampReturnType); load->setType(sampReturnType); load->setLoc(loc); load->getSequence().push_back(base); load->getSequence().push_back(index); // Textures need a MIP. If we saw one go by, use it. Otherwise, use zero. if (sampler.isTexture()) { if (! mipsOperatorMipArg.empty()) { load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel); mipsOperatorMipArg.pop_back(); } else { load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true)); } } return load; } } } // Handle operator[] on structured buffers: this indexes into the array element of the buffer. // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO). TIntermTyped* sbArray = indexStructBufferContent(loc, base); if (sbArray != nullptr) { if (sbArray == nullptr) return nullptr; // Now we'll apply the [] index to that array const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc); const TType derefType(sbArray->getType(), 0); element->setType(derefType); return element; } return nullptr; } // // Cast index value to a uint if it isn't already (for operator[], load indexes, etc) TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index) { const TBasicType indexBasicType = index->getType().getBasicType(); const int vecSize = index->getType().getVectorSize(); // We can use int types directly as the index if (indexBasicType == EbtInt || indexBasicType == EbtUint || indexBasicType == EbtInt64 || indexBasicType == EbtUint64) return index; // Cast index to unsigned integer if it isn't one. return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index); } // // Handle seeing a base[index] dereference in the grammar. // TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) { index = makeIntegerIndex(index); if (index == nullptr) { error(loc, " unknown index type ", "", ""); return nullptr; } TIntermTyped* result = handleBracketOperator(loc, base, index); if (result != nullptr) return result; // it was handled as an operator[] bool flattened = false; int indexValue = 0; if (index->getQualifier().isFrontEndConstant()) indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); variableCheck(base); if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) { if (base->getAsSymbolNode()) error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), ""); else error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) { // both base and index are front-end constants checkIndex(loc, base->getType(), indexValue); return intermediate.foldDereference(base, indexValue, loc); } else { // at least one of base and index is variable... if (index->getQualifier().isFrontEndConstant()) checkIndex(loc, base->getType(), indexValue); if (base->getType().isScalarOrVec1()) result = base; else if (base->getAsSymbolNode() && wasFlattened(base)) { if (index->getQualifier().storage != EvqConst) error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), ""); result = flattenAccess(base, indexValue); flattened = (result != base); } else { if (index->getQualifier().isFrontEndConstant()) { if (base->getType().isUnsizedArray()) base->getWritableType().updateImplicitArraySize(indexValue + 1); else checkIndex(loc, base->getType(), indexValue); result = intermediate.addIndex(EOpIndexDirect, base, index, loc); } else result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); } } if (result == nullptr) { // Insert dummy error-recovery result result = intermediate.addConstantUnion(0.0, EbtFloat, loc); } else { // If the array reference was flattened, it has the correct type. E.g, if it was // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps. // In that case, we preserve the qualifiers. if (!flattened) { // Insert valid dereferenced result TType newType(base->getType(), 0); // dereferenced type if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) newType.getQualifier().storage = EvqConst; else newType.getQualifier().storage = EvqTemporary; result->setType(newType); } } return result; } // Handle seeing a binary node with a math operation. TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right) { TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc); if (result == nullptr) binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); return result; } // Handle seeing a unary node with a math operation. TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode) { TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc); if (result) return result; else unaryOpError(loc, str, childNode->getCompleteString()); return childNode; } // // Return true if the name is a struct buffer method // bool HlslParseContext::isStructBufferMethod(const TString& name) const { return name == "GetDimensions" || name == "Load" || name == "Load2" || name == "Load3" || name == "Load4" || name == "Store" || name == "Store2" || name == "Store3" || name == "Store4" || name == "InterlockedAdd" || name == "InterlockedAnd" || name == "InterlockedCompareExchange" || name == "InterlockedCompareStore" || name == "InterlockedExchange" || name == "InterlockedMax" || name == "InterlockedMin" || name == "InterlockedOr" || name == "InterlockedXor" || name == "IncrementCounter" || name == "DecrementCounter" || name == "Append" || name == "Consume"; } // // Handle seeing a base.field dereference in the grammar, where 'field' is a // swizzle or member variable. // TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) { variableCheck(base); if (base->isArray()) { error(loc, "cannot apply to an array:", ".", field.c_str()); return base; } TIntermTyped* result = base; if (base->getType().getBasicType() == EbtSampler) { // Handle .mips[mipid][pos] operation on textures const TSampler& sampler = base->getType().getSampler(); if (sampler.isTexture() && field == "mips") { // Push a null to signify that we expect a mip level under operator[] next. mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr)); // Keep 'result' pointing to 'base', since we expect an operator[] to go by next. } else { if (field == "mips") error(loc, "unexpected texture type for .mips[][] operator:", base->getType().getCompleteString().c_str(), ""); else error(loc, "unexpected operator on texture type:", field.c_str(), base->getType().getCompleteString().c_str()); } } else if (base->isVector() || base->isScalar()) { TSwizzleSelectors<TVectorSelector> selectors; parseSwizzleSelector(loc, field, base->getVectorSize(), selectors); if (base->isScalar()) { if (selectors.size() == 1) return result; else { TType type(base->getBasicType(), EvqTemporary, selectors.size()); return addConstructor(loc, base, type); } } if (base->getVectorSize() == 1) { TType scalarType(base->getBasicType(), EvqTemporary, 1); if (selectors.size() == 1) return addConstructor(loc, base, scalarType); else { TType vectorType(base->getBasicType(), EvqTemporary, selectors.size()); return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType); } } if (base->getType().getQualifier().isFrontEndConstant()) result = intermediate.foldSwizzle(base, selectors, loc); else { if (selectors.size() == 1) { TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc); result = intermediate.addIndex(EOpIndexDirect, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary)); } else { TIntermTyped* index = intermediate.addSwizzle(selectors, loc); result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size())); } } } else if (base->isMatrix()) { TSwizzleSelectors<TMatrixSelector> selectors; if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors)) return result; if (selectors.size() == 1) { // Representable by m[c][r] if (base->getType().getQualifier().isFrontEndConstant()) { result = intermediate.foldDereference(base, selectors[0].coord1, loc); result = intermediate.foldDereference(result, selectors[0].coord2, loc); } else { result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(selectors[0].coord1, loc), loc); TType dereferencedCol(base->getType(), 0); result->setType(dereferencedCol); result = intermediate.addIndex(EOpIndexDirect, result, intermediate.addConstantUnion(selectors[0].coord2, loc), loc); TType dereferenced(dereferencedCol, 0); result->setType(dereferenced); } } else { int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors); if (column >= 0) { // Representable by m[c] if (base->getType().getQualifier().isFrontEndConstant()) result = intermediate.foldDereference(base, column, loc); else { result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc), loc); TType dereferenced(base->getType(), 0); result->setType(dereferenced); } } else { // general case, not a column, not a single component TIntermTyped* index = intermediate.addSwizzle(selectors, loc); result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size())); } } } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) { const TTypeList* fields = base->getType().getStruct(); bool fieldFound = false; int member; for (member = 0; member < (int)fields->size(); ++member) { if ((*fields)[member].type->getFieldName() == field) { fieldFound = true; break; } } if (fieldFound) { if (base->getAsSymbolNode() && wasFlattened(base)) { result = flattenAccess(base, member); } else { if (base->getType().getQualifier().storage == EvqConst) result = intermediate.foldDereference(base, member, loc); else { TIntermTyped* index = intermediate.addConstantUnion(member, loc); result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); result->setType(*(*fields)[member].type); } } } else error(loc, "no such field in structure", field.c_str(), ""); } else error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); return result; } // // Return true if the field should be treated as a built-in method. // Return false otherwise. // bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field) { if (base == nullptr) return false; variableCheck(base); if (base->getType().getBasicType() == EbtSampler) { return true; } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) { return true; } else if (field == "Append" || field == "RestartStrip") { // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but // the code is around in the shader source. return true; } else return false; } // Independently establish a built-in that is a member of a structure. // 'arraySizes' are what's desired for the independent built-in, whatever // the higher-level source/expression of them was. void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes, const TQualifier& outerQualifier) { // Because of arrays of structs, we might be asked more than once, // but the arraySizes passed in should have captured the whole thing // the first time. // However, clip/cull rely on multiple updates. if (!isClipOrCullDistance(memberType)) if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) != splitBuiltIns.end()) return; TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType); if (arraySizes != nullptr && !memberType.isArray()) ioVar->getWritableType().copyArraySizes(*arraySizes); splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar; if (!isClipOrCullDistance(ioVar->getType())) trackLinkage(*ioVar); // Merge qualifier from the user structure mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier); // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the // shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks // at the qualifier to determine e.g, in or out qualifications. fixBuiltInIoType(ioVar->getWritableType()); // But, not location, we're losing that ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd; } // Split a type into // 1. a struct of non-I/O members // 2. a collection of independent I/O variables void HlslParseContext::split(const TVariable& variable) { // Create a new variable: const TType& clonedType = *variable.getType().clone(); const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier()); splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType); } // Recursive implementation of split(). // Returns reference to the modified type. const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier) { if (type.isStruct()) { TTypeList* userStructure = type.getWritableStruct(); for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) { if (ioType->type->isBuiltIn()) { // move out the built-in splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier); ioType = userStructure->erase(ioType); } else { split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier); ++ioType; } } } return type; } // Is this an aggregate that should be flattened? // Can be applied to intermediate levels of type in a hierarchy. // Some things like flattening uniform arrays are only about the top level // of the aggregate, triggered on 'topLevel'. bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const { switch (qualifier) { case EvqVaryingIn: case EvqVaryingOut: return type.isStruct() || type.isArray(); case EvqUniform: return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) || (type.isStruct() && type.containsOpaque()); default: return false; }; } // Top level variable flattening: construct data void HlslParseContext::flatten(const TVariable& variable, bool linkage) { const TType& type = variable.getType(); // If it's a standalone built-in, there is nothing to flatten if (type.isBuiltIn() && !type.isStruct()) return; auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(), TFlattenData(type.getQualifier().layoutBinding, type.getQualifier().layoutLocation))); // the item is a map pair, so first->second is the TFlattenData itself. flatten(variable, type, entry.first->second, variable.getName(), linkage, type.getQualifier(), nullptr); } // Recursively flatten the given variable at the provided type, building the flattenData as we go. // // This is mutually recursive with flattenStruct and flattenArray. // We are going to flatten an arbitrarily nested composite structure into a linear sequence of // members, and later on, we want to turn a path through the tree structure into a final // location in this linear sequence. // // If the tree was N-ary, that can be directly calculated. However, we are dealing with // arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must // build a data structure to allow the sequence of bracket and dot operators on arrays and // structs to arrive at the proper member. // // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers. // The leaves are the indexes into the flattened member array. // Each level will have the next location for the Nth item stored sequentially, so for instance: // // struct { float2 a[2]; int b; float4 c[3] }; // // This will produce the following flattened tree: // Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 // (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5} // // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse: // (0+2) = 8 --> (8+1) = 12 --> 12 = 4 // // so the 4th flattened member in traversal order is ours. // int HlslParseContext::flatten(const TVariable& variable, const TType& type, TFlattenData& flattenData, TString name, bool linkage, const TQualifier& outerQualifier, const TArraySizes* builtInArraySizes) { // If something is an arrayed struct, the array flattener will recursively call flatten() // to then flatten the struct, so this is an "if else": we don't do both. if (type.isArray()) return flattenArray(variable, type, flattenData, name, linkage, outerQualifier); else if (type.isStruct()) return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes); else { assert(0); // should never happen return -1; } } // Add a single flattened member to the flattened data being tracked for the composite // Returns true for the final flattening level. int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData, const TString& memberName, bool linkage, const TQualifier& outerQualifier, const TArraySizes* builtInArraySizes) { if (!shouldFlatten(type, outerQualifier.storage, false)) { // This is as far as we flatten. Insert the variable. TVariable* memberVariable = makeInternalVariable(memberName, type); mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier()); if (flattenData.nextBinding != TQualifier::layoutBindingEnd) memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++; if (memberVariable->getType().isBuiltIn()) { // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number) memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd; } else { // inherited locations must be auto bumped, not replicated if (flattenData.nextLocation != TQualifier::layoutLocationEnd) { memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation; flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language); nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation); } } flattenData.offsets.push_back(static_cast<int>(flattenData.members.size())); flattenData.members.push_back(memberVariable); if (linkage) trackLinkage(*memberVariable); return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference } else { // Further recursion required return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes); } } // Figure out the mapping between an aggregate's top members and an // equivalent set of individual variables. // // Assumes shouldFlatten() or equivalent was called first. int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type, TFlattenData& flattenData, TString name, bool linkage, const TQualifier& outerQualifier, const TArraySizes* builtInArraySizes) { assert(type.isStruct()); auto members = *type.getStruct(); // Reserve space for this tree level. int start = static_cast<int>(flattenData.offsets.size()); int pos = start; flattenData.offsets.resize(int(pos + members.size()), -1); for (int member = 0; member < (int)members.size(); ++member) { TType& dereferencedType = *members[member].type; if (dereferencedType.isBuiltIn()) splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier); else { const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, name + "." + dereferencedType.getFieldName(), linkage, outerQualifier, builtInArraySizes == nullptr && dereferencedType.isArray() ? dereferencedType.getArraySizes() : builtInArraySizes); flattenData.offsets[pos++] = mpos; } } return start; } // Figure out mapping between an array's members and an // equivalent set of individual variables. // // Assumes shouldFlatten() or equivalent was called first. int HlslParseContext::flattenArray(const TVariable& variable, const TType& type, TFlattenData& flattenData, TString name, bool linkage, const TQualifier& outerQualifier) { assert(type.isSizedArray()); const int size = type.getOuterArraySize(); const TType dereferencedType(type, 0); if (name.empty()) name = variable.getName(); // Reserve space for this tree level. int start = static_cast<int>(flattenData.offsets.size()); int pos = start; flattenData.offsets.resize(int(pos + size), -1); for (int element=0; element < size; ++element) { char elementNumBuf[20]; // sufficient for MAXINT snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element); const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, name + elementNumBuf, linkage, outerQualifier, type.getArraySizes()); flattenData.offsets[pos++] = mpos; } return start; } // Return true if we have flattened this node. bool HlslParseContext::wasFlattened(const TIntermTyped* node) const { return node != nullptr && node->getAsSymbolNode() != nullptr && wasFlattened(node->getAsSymbolNode()->getId()); } // Return true if we have split this structure bool HlslParseContext::wasSplit(const TIntermTyped* node) const { return node != nullptr && node->getAsSymbolNode() != nullptr && wasSplit(node->getAsSymbolNode()->getId()); } // Turn an access into an aggregate that was flattened to instead be // an access to the individual variable the member was flattened to. // Assumes wasFlattened() or equivalent was called first. TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member) { const TType dereferencedType(base->getType(), member); // dereferenced type const TIntermSymbol& symbolNode = *base->getAsSymbolNode(); TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage, dereferencedType, symbolNode.getFlattenSubset()); return flattened ? flattened : base; } TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage, const TType& dereferencedType, int subset) { const auto flattenData = flattenMap.find(uniqueId); if (flattenData == flattenMap.end()) return nullptr; // Calculate new cumulative offset from the packed tree int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member]; TIntermSymbol* subsetSymbol; if (!shouldFlatten(dereferencedType, outerStorage, false)) { // Finished flattening: create symbol for variable member = flattenData->second.offsets[newSubset]; const TVariable* memberVariable = flattenData->second.members[member]; subsetSymbol = intermediate.addSymbol(*memberVariable); subsetSymbol->setFlattenSubset(-1); } else { // If this is not the final flattening, accumulate the position and return // an object of the partially dereferenced type. subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType); subsetSymbol->setFlattenSubset(newSubset); } return subsetSymbol; } // For finding where the first leaf is in a subtree of a multi-level aggregate // that is just getting a subset assigned. Follows the same logic as flattenAccess, // but logically going down the "left-most" tree branch each step of the way. // // Returns the offset into the first leaf of the subset. int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const { const TIntermSymbol* sym = node.getAsSymbolNode(); if (sym == nullptr) return 0; if (!sym->isArray() && !sym->isStruct()) return 0; int subset = sym->getFlattenSubset(); if (subset == -1) return 0; // Getting this far means a partial aggregate is identified by the flatten subset. // Find the first leaf of the subset. const auto flattenData = flattenMap.find(sym->getId()); if (flattenData == flattenMap.end()) return 0; return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets); do { subset = flattenData->second.offsets[subset]; } while (true); } // Recursively do the desent int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const { if (!type.isArray() && !type.isStruct()) return offsets[subset]; TType derefType(type, 0); return findSubtreeOffset(derefType, offsets[subset], offsets); }; // Find and return the split IO TVariable for id, or nullptr if none. TVariable* HlslParseContext::getSplitNonIoVar(int id) const { const auto splitNonIoVar = splitNonIoVars.find(id); if (splitNonIoVar == splitNonIoVars.end()) return nullptr; return splitNonIoVar->second; } // Pass through to base class after remembering built-in mappings. void HlslParseContext::trackLinkage(TSymbol& symbol) { TBuiltInVariable biType = symbol.getType().getQualifier().builtIn; if (biType != EbvNone) builtInTessLinkageSymbols[biType] = symbol.clone(); TParseContextBase::trackLinkage(symbol); } // Returns true if the built-in is a clip or cull distance variable. bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn) { return builtIn == EbvClipDistance || builtIn == EbvCullDistance; } // Some types require fixed array sizes in SPIR-V, but can be scalars or // arrays of sizes SPIR-V doesn't allow. For example, tessellation factors. // This creates the right size. A conversion is performed when the internal // type is copied to or from the external type. This corrects the externally // facing input or output type to abide downstream semantics. void HlslParseContext::fixBuiltInIoType(TType& type) { int requiredArraySize = 0; int requiredVectorSize = 0; switch (type.getQualifier().builtIn) { case EbvTessLevelOuter: requiredArraySize = 4; break; case EbvTessLevelInner: requiredArraySize = 2; break; case EbvSampleMask: { // Promote scalar to array of size 1. Leave existing arrays alone. if (!type.isArray()) requiredArraySize = 1; break; } case EbvWorkGroupId: requiredVectorSize = 3; break; case EbvGlobalInvocationId: requiredVectorSize = 3; break; case EbvLocalInvocationId: requiredVectorSize = 3; break; case EbvTessCoord: requiredVectorSize = 3; break; default: if (isClipOrCullDistance(type)) { const int loc = type.getQualifier().layoutLocation; if (type.getQualifier().builtIn == EbvClipDistance) { if (type.getQualifier().storage == EvqVaryingIn) clipSemanticNSizeIn[loc] = type.getVectorSize(); else clipSemanticNSizeOut[loc] = type.getVectorSize(); } else { if (type.getQualifier().storage == EvqVaryingIn) cullSemanticNSizeIn[loc] = type.getVectorSize(); else cullSemanticNSizeOut[loc] = type.getVectorSize(); } } return; } // Alter or set vector size as needed. if (requiredVectorSize > 0) { TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize); newType.getQualifier() = type.getQualifier(); type.shallowCopy(newType); } // Alter or set array size as needed. if (requiredArraySize > 0) { if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) { TArraySizes* arraySizes = new TArraySizes; arraySizes->addInnerSize(requiredArraySize); type.transferArraySizes(arraySizes); } } } // Variables that correspond to the user-interface in and out of a stage // (not the built-in interface) are // - assigned locations // - registered as a linkage node (part of the stage's external interface). // Assumes it is called in the order in which locations should be assigned. void HlslParseContext::assignToInterface(TVariable& variable) { const auto assignLocation = [&](TVariable& variable) { TType& type = variable.getWritableType(); if (!type.isStruct() || type.getStruct()->size() > 0) { TQualifier& qualifier = type.getQualifier(); if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) { if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) { // Strip off the outer array dimension for those having an extra one. int size; if (type.isArray() && qualifier.isArrayedIo(language)) { TType elementType(type, 0); size = intermediate.computeTypeLocationSize(elementType, language); } else size = intermediate.computeTypeLocationSize(type, language); if (qualifier.storage == EvqVaryingIn) { variable.getWritableType().getQualifier().layoutLocation = nextInLocation; nextInLocation += size; } else { variable.getWritableType().getQualifier().layoutLocation = nextOutLocation; nextOutLocation += size; } } trackLinkage(variable); } } }; if (wasFlattened(variable.getUniqueId())) { auto& memberList = flattenMap[variable.getUniqueId()].members; for (auto member = memberList.begin(); member != memberList.end(); ++member) assignLocation(**member); } else if (wasSplit(variable.getUniqueId())) { TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId()); assignLocation(*splitIoVar); } else { assignLocation(variable); } } // // Handle seeing a function declarator in the grammar. This is the precursor // to recognizing a function prototype or function definition. // void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) { // // Multiple declarations of the same function name are allowed. // // If this is a definition, the definition production code will check for redefinitions // (we don't know at this point if it's a definition or not). // bool builtIn; TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0; if (prototype) { // All built-in functions are defined, even though they don't have a body. // Count their prototype as a definition instead. if (symbolTable.atBuiltInLevel()) function.setDefined(); else { if (prevDec && ! builtIn) symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const function.setPrototyped(); } } // This insert won't actually insert it if it's a duplicate signature, but it will still check for // other forms of name collisions. if (! symbolTable.insert(function)) error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); } // For struct buffers with counters, we must pass the counter buffer as hidden parameter. // This adds the hidden parameter to the parameter list in 'paramNodes' if needed. // Otherwise, it's a no-op void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param, TIntermAggregate*& paramNodes) { if (! hasStructBuffCounter(*param.type)) return; const TString counterBlockName(intermediate.addCounterBufferName(*param.name)); TType counterType; counterBufferType(loc, counterType); TVariable *variable = makeInternalVariable(counterBlockName, counterType); if (! symbolTable.insert(*variable)) error(loc, "redefinition", variable->getName().c_str(), ""); paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*variable, loc), loc); } // // Handle seeing the function prototype in front of a function definition in the grammar. // The body is handled after this function returns. // // Returns an aggregate of parameter-symbol nodes. // TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function, const TAttributes& attributes, TIntermNode*& entryPointTree) { currentCaller = function.getMangledName(); TSymbol* symbol = symbolTable.find(function.getMangledName()); TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; if (prevDec == nullptr) error(loc, "can't find function", function.getName().c_str(), ""); // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurrence. if (prevDec && prevDec->isDefined()) { // Then this function already has a body. error(loc, "function already has a body", function.getName().c_str(), ""); } if (prevDec && ! prevDec->isDefined()) { prevDec->setDefined(); // Remember the return type for later checking for RETURN statements. currentFunctionType = &(prevDec->getType()); } else currentFunctionType = new TType(EbtVoid); functionReturnsValue = false; // Entry points need different I/O and other handling, transform it so the // rest of this function doesn't care. entryPointTree = transformEntryPoint(loc, function, attributes); // // New symbol table scope for body of function plus its arguments // pushScope(); // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the AST, so lower level code // knows where to find parameters. // TIntermAggregate* paramNodes = new TIntermAggregate; for (int i = 0; i < function.getParamCount(); i++) { TParameter& param = function[i]; if (param.name != nullptr) { TVariable *variable = new TVariable(param.name, *param.type); if (i == 0 && function.hasImplicitThis()) { // Anonymous 'this' members are already in a symbol-table level, // and we need to know what function parameter to map them to. symbolTable.makeInternalVariable(*variable); pushImplicitThis(variable); } // Insert the parameters with name in the symbol table. if (! symbolTable.insert(*variable)) error(loc, "redefinition", variable->getName().c_str(), ""); // Add parameters to the AST list. if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) { // Expand the AST parameter nodes (but not the name mangling or symbol table view) // for structures that need to be flattened. flatten(*variable, false); const TTypeList* structure = variable->getType().getStruct(); for (int mem = 0; mem < (int)structure->size(); ++mem) { paramNodes = intermediate.growAggregate(paramNodes, flattenAccess(variable->getUniqueId(), mem, variable->getType().getQualifier().storage, *(*structure)[mem].type), loc); } } else { // Add the parameter to the AST paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*variable, loc), loc); } // Add hidden AST parameter for struct buffer counters, if needed. addStructBufferHiddenCounterParam(loc, param, paramNodes); } else paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); } if (function.hasIllegalImplicitThis()) pushImplicitThis(nullptr); intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); loopNestingLevel = 0; controlFlowNestingLevel = 0; postEntryPointReturn = false; return paramNodes; } // Handle all [attrib] attribute for the shader entry point void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes) { for (auto it = attributes.begin(); it != attributes.end(); ++it) { switch (it->name) { case EatNumThreads: { const TIntermSequence& sequence = it->args->getSequence(); for (int lid = 0; lid < int(sequence.size()); ++lid) intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst()); break; } case EatMaxVertexCount: { int maxVertexCount; if (! it->getInt(maxVertexCount)) { error(loc, "invalid maxvertexcount", "", ""); } else { if (! intermediate.setVertices(maxVertexCount)) error(loc, "cannot change previously set maxvertexcount attribute", "", ""); } break; } case EatPatchConstantFunc: { TString pcfName; if (! it->getString(pcfName, 0, false)) { error(loc, "invalid patch constant function", "", ""); } else { patchConstantFunctionName = pcfName; } break; } case EatDomain: { // Handle [domain("...")] TString domainStr; if (! it->getString(domainStr)) { error(loc, "invalid domain", "", ""); } else { TLayoutGeometry domain = ElgNone; if (domainStr == "tri") { domain = ElgTriangles; } else if (domainStr == "quad") { domain = ElgQuads; } else if (domainStr == "isoline") { domain = ElgIsolines; } else { error(loc, "unsupported domain type", domainStr.c_str(), ""); } if (language == EShLangTessEvaluation) { if (! intermediate.setInputPrimitive(domain)) error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), ""); } else { if (! intermediate.setOutputPrimitive(domain)) error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), ""); } } break; } case EatOutputTopology: { // Handle [outputtopology("...")] TString topologyStr; if (! it->getString(topologyStr)) { error(loc, "invalid outputtopology", "", ""); } else { TVertexOrder vertexOrder = EvoNone; TLayoutGeometry primitive = ElgNone; if (topologyStr == "point") { intermediate.setPointMode(); } else if (topologyStr == "line") { primitive = ElgIsolines; } else if (topologyStr == "triangle_cw") { vertexOrder = EvoCw; primitive = ElgTriangles; } else if (topologyStr == "triangle_ccw") { vertexOrder = EvoCcw; primitive = ElgTriangles; } else { error(loc, "unsupported outputtopology type", topologyStr.c_str(), ""); } if (vertexOrder != EvoNone) { if (! intermediate.setVertexOrder(vertexOrder)) { error(loc, "cannot change previously set outputtopology", TQualifier::getVertexOrderString(vertexOrder), ""); } } if (primitive != ElgNone) intermediate.setOutputPrimitive(primitive); } break; } case EatPartitioning: { // Handle [partitioning("...")] TString partitionStr; if (! it->getString(partitionStr)) { error(loc, "invalid partitioning", "", ""); } else { TVertexSpacing partitioning = EvsNone; if (partitionStr == "integer") { partitioning = EvsEqual; } else if (partitionStr == "fractional_even") { partitioning = EvsFractionalEven; } else if (partitionStr == "fractional_odd") { partitioning = EvsFractionalOdd; //} else if (partition == "pow2") { // TODO: currently nothing to map this to. } else { error(loc, "unsupported partitioning type", partitionStr.c_str(), ""); } if (! intermediate.setVertexSpacing(partitioning)) error(loc, "cannot change previously set partitioning", TQualifier::getVertexSpacingString(partitioning), ""); } break; } case EatOutputControlPoints: { // Handle [outputcontrolpoints("...")] int ctrlPoints; if (! it->getInt(ctrlPoints)) { error(loc, "invalid outputcontrolpoints", "", ""); } else { if (! intermediate.setVertices(ctrlPoints)) { error(loc, "cannot change previously set outputcontrolpoints attribute", "", ""); } } break; } case EatBuiltIn: case EatLocation: // tolerate these because of dual use of entrypoint and type attributes break; default: warn(loc, "attribute does not apply to entry point", "", ""); break; } } } // Update the given type with any type-like attribute information in the // attributes. void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type, bool allowEntry) { if (attributes.size() == 0) return; int value; TString builtInString; for (auto it = attributes.begin(); it != attributes.end(); ++it) { switch (it->name) { case EatLocation: // location if (it->getInt(value)) type.getQualifier().layoutLocation = value; break; case EatBinding: // binding if (it->getInt(value)) { type.getQualifier().layoutBinding = value; type.getQualifier().layoutSet = 0; } // set if (it->getInt(value, 1)) type.getQualifier().layoutSet = value; break; case EatGlobalBinding: // global cbuffer binding if (it->getInt(value)) globalUniformBinding = value; // global cbuffer binding if (it->getInt(value, 1)) globalUniformSet = value; break; case EatInputAttachment: // input attachment if (it->getInt(value)) type.getQualifier().layoutAttachment = value; break; case EatBuiltIn: // PointSize built-in if (it->getString(builtInString, 0, false)) { if (builtInString == "PointSize") type.getQualifier().builtIn = EbvPointSize; } break; case EatPushConstant: // push_constant type.getQualifier().layoutPushConstant = true; break; case EatConstantId: // specialization constant if (it->getInt(value)) { TSourceLoc loc; loc.init(); setSpecConstantId(loc, type.getQualifier(), value); } break; default: if (! allowEntry) warn(loc, "attribute does not apply to a type", "", ""); break; } } } // // Do all special handling for the entry point, including wrapping // the shader's entry point with the official entry point that will call it. // // The following: // // retType shaderEntryPoint(args...) // shader declared entry point // { body } // // Becomes // // out retType ret; // in iargs<that are input>...; // out oargs<that are output> ...; // // void shaderEntryPoint() // synthesized, but official, entry point // { // args<that are input> = iargs...; // ret = @shaderEntryPoint(args...); // oargs = args<that are output>...; // } // retType @shaderEntryPoint(args...) // { body } // // The symbol table will still map the original entry point name to the // the modified function and its new name: // // symbol table: shaderEntryPoint -> @shaderEntryPoint // // Returns nullptr if no entry-point tree was built, otherwise, returns // a subtree that creates the entry point. // TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction, const TAttributes& attributes) { // Return true if this is a tessellation patch constant function input to a domain shader. const auto isDsPcfInput = [this](const TType& type) { return language == EShLangTessEvaluation && type.contains([](const TType* t) { return t->getQualifier().builtIn == EbvTessLevelOuter || t->getQualifier().builtIn == EbvTessLevelInner; }); }; // if we aren't in the entry point, fix the IO as such and exit if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) { remapNonEntryPointIO(userFunction); return nullptr; } entryPointFunction = &userFunction; // needed in finish() // Handle entry point attributes handleEntryPointAttributes(loc, attributes); // entry point logic... // Move parameters and return value to shader in/out TVariable* entryPointOutput; // gets created in remapEntryPointIO TVector<TVariable*> inputs; TVector<TVariable*> outputs; remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs); // Further this return/in/out transform by flattening, splitting, and assigning locations const auto makeVariableInOut = [&](TVariable& variable) { if (variable.getType().isStruct()) { if (variable.getType().getQualifier().isArrayedIo(language)) { if (variable.getType().containsBuiltIn()) split(variable); } else if (shouldFlatten(variable.getType(), EvqVaryingIn /* not assigned yet, but close enough */, true)) flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */); } // TODO: flatten arrays too // TODO: flatten everything in I/O // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed // For clip and cull distance, multiple output variables potentially get merged // into one in assignClipCullDistance. That code in assignClipCullDistance // handles the interface logic, so we avoid it here in that case. if (!isClipOrCullDistance(variable.getType())) assignToInterface(variable); }; if (entryPointOutput != nullptr) makeVariableInOut(*entryPointOutput); for (auto it = inputs.begin(); it != inputs.end(); ++it) if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below) makeVariableInOut(*(*it)); for (auto it = outputs.begin(); it != outputs.end(); ++it) makeVariableInOut(*(*it)); // In the domain shader, PCF input must be at the end of the linkage. That's because in the // hull shader there is no ordering: the output comes from the separate PCF, which does not // participate in the argument list. That is always put at the end of the HS linkage, so the // input side of the DS must match. The argument may be in any position in the DS argument list // however, so this ensures the linkage is built in the correct order regardless of argument order. if (language == EShLangTessEvaluation) { for (auto it = inputs.begin(); it != inputs.end(); ++it) if (isDsPcfInput((*it)->getType())) makeVariableInOut(*(*it)); } // Synthesize the call pushScope(); // matches the one in handleFunctionBody() // new signature TType voidType(EbtVoid); TFunction synthEntryPoint(&userFunction.getName(), voidType); TIntermAggregate* synthParams = new TIntermAggregate(); intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc); intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str()); intermediate.incrementEntryPointCount(); TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table // change original name userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table // Copy inputs (shader-in -> calling arg), while building up the call node TVector<TVariable*> argVars; TIntermAggregate* synthBody = new TIntermAggregate(); auto inputIt = inputs.begin(); TIntermTyped* callingArgs = nullptr; for (int i = 0; i < userFunction.getParamCount(); i++) { TParameter& param = userFunction[i]; argVars.push_back(makeInternalVariable(*param.name, *param.type)); argVars.back()->getWritableType().getQualifier().makeTemporary(); // Track the input patch, which is the only non-builtin supported by hull shader PCF. if (param.getDeclaredBuiltIn() == EbvInputPatch) inputPatch = argVars.back(); TIntermSymbol* arg = intermediate.addSymbol(*argVars.back()); handleFunctionArgument(&callee, callingArgs, arg); if (param.type->getQualifier().isParamInput()) { intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, intermediate.addSymbol(**inputIt))); inputIt++; } } // Call currentCaller = synthEntryPoint.getMangledName(); TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs); currentCaller = userFunction.getMangledName(); // Return value if (entryPointOutput) { TIntermTyped* returnAssign; // For hull shaders, the wrapped entry point return value is written to // an array element as indexed by invocation ID, which we might have to make up. // This is required to match SPIR-V semantics. if (language == EShLangTessControl) { TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId); // If there is no user declared invocation ID, we must make one. if (invocationIdSym == nullptr) { TType invocationIdType(EbtUint, EvqIn, 1); TString* invocationIdName = NewPoolTString("InvocationId"); invocationIdType.getQualifier().builtIn = EbvInvocationId; TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType); globalQualifierFix(loc, variable->getWritableType().getQualifier()); trackLinkage(*variable); invocationIdSym = intermediate.addSymbol(*variable); } TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput), invocationIdSym, loc); // Set the type of the array element being dereferenced const TType derefElementType(entryPointOutput->getType(), 0); element->setType(derefElementType); returnAssign = handleAssign(loc, EOpAssign, element, callReturn); } else { returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn); } intermediate.growAggregate(synthBody, returnAssign); } else intermediate.growAggregate(synthBody, callReturn); // Output copies auto outputIt = outputs.begin(); for (int i = 0; i < userFunction.getParamCount(); i++) { TParameter& param = userFunction[i]; // GS outputs are via emit, so we do not copy them here. if (param.type->getQualifier().isParamOutput()) { if (param.getDeclaredBuiltIn() == EbvGsOutputStream) { // GS output stream does not assign outputs here: it's the Append() method // which writes to the output, probably multiple times separated by Emit. // We merely remember the output to use, here. gsStreamOutput = *outputIt; } else { intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, intermediate.addSymbol(**outputIt), intermediate.addSymbol(*argVars[i]))); } outputIt++; } } // Put the pieces together to form a full function subtree // for the synthesized entry point. synthBody->setOperator(EOpSequence); TIntermNode* synthFunctionDef = synthParams; handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef); entryPointFunctionBody = synthBody; return synthFunctionDef; } void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody, TIntermNode*& node) { node = intermediate.growAggregate(node, functionBody); intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc); node->getAsAggregate()->setName(function.getMangledName().c_str()); popScope(); if (function.hasImplicitThis()) popImplicitThis(); if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue) error(loc, "function does not return a value:", "", function.getName().c_str()); } // AST I/O is done through shader globals declared in the 'in' or 'out' // storage class. An HLSL entry point has a return value, input parameters // and output parameters. These need to get remapped to the AST I/O. void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue, TVector<TVariable*>& inputs, TVector<TVariable*>& outputs) { // We might have in input structure type with no decorations that caused it // to look like an input type, yet it has (e.g.) interpolation types that // must be modified that turn it into an input type. // Hence, a missing ioTypeMap for 'input' might need to be synthesized. const auto synthesizeEditedInput = [this](TType& type) { // True if a type needs to be 'flat' const auto needsFlat = [](const TType& type) { return type.containsBasicType(EbtInt) || type.containsBasicType(EbtUint) || type.containsBasicType(EbtInt64) || type.containsBasicType(EbtUint64) || type.containsBasicType(EbtBool) || type.containsBasicType(EbtDouble); }; if (language == EShLangFragment && needsFlat(type)) { if (type.isStruct()) { TTypeList* finalList = nullptr; auto it = ioTypeMap.find(type.getStruct()); if (it == ioTypeMap.end() || it->second.input == nullptr) { // Getting here means we have no input struct, but we need one. auto list = new TTypeList; for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { TType* newType = new TType; newType->shallowCopy(*member->type); TTypeLoc typeLoc = { newType, member->loc }; list->push_back(typeLoc); } // install the new input type if (it == ioTypeMap.end()) { tIoKinds newLists = { list, nullptr, nullptr }; ioTypeMap[type.getStruct()] = newLists; } else it->second.input = list; finalList = list; } else finalList = it->second.input; // edit for 'flat' for (auto member = finalList->begin(); member != finalList->end(); ++member) { if (needsFlat(*member->type)) { member->type->getQualifier().clearInterpolation(); member->type->getQualifier().flat = true; } } } else { type.getQualifier().clearInterpolation(); type.getQualifier().flat = true; } } }; // Do the actual work to make a type be a shader input or output variable, // and clear the original to be non-IO (for use as a normal function parameter/return). const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* { TVariable* ioVariable = makeInternalVariable(name, type); clearUniformInputOutput(type.getQualifier()); if (type.isStruct()) { auto newLists = ioTypeMap.find(ioVariable->getType().getStruct()); if (newLists != ioTypeMap.end()) { if (storage == EvqVaryingIn && newLists->second.input) ioVariable->getWritableType().setStruct(newLists->second.input); else if (storage == EvqVaryingOut && newLists->second.output) ioVariable->getWritableType().setStruct(newLists->second.output); } } if (storage == EvqVaryingIn) { correctInput(ioVariable->getWritableType().getQualifier()); if (language == EShLangTessEvaluation) if (!ioVariable->getType().isArray()) ioVariable->getWritableType().getQualifier().patch = true; } else { correctOutput(ioVariable->getWritableType().getQualifier()); } ioVariable->getWritableType().getQualifier().storage = storage; fixBuiltInIoType(ioVariable->getWritableType()); return ioVariable; }; // return value is actually a shader-scoped output (out) if (function.getType().getBasicType() == EbtVoid) { returnValue = nullptr; } else { if (language == EShLangTessControl) { // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an // array in SPIR-V semantics. We'll write to it indexed by invocation ID. returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut); TType outputType; outputType.shallowCopy(function.getType()); // vertices has necessarily already been set when handling entry point attributes. TArraySizes* arraySizes = new TArraySizes; arraySizes->addInnerSize(intermediate.getVertices()); outputType.transferArraySizes(arraySizes); clearUniformInputOutput(function.getWritableType().getQualifier()); returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut); } else { returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut); } } // parameters are actually shader-scoped inputs and outputs (in or out) for (int i = 0; i < function.getParamCount(); i++) { TType& paramType = *function[i].type; if (paramType.getQualifier().isParamInput()) { synthesizeEditedInput(paramType); TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn); inputs.push_back(argAsGlobal); } if (paramType.getQualifier().isParamOutput()) { TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut); outputs.push_back(argAsGlobal); } } } // An HLSL function that looks like an entry point, but is not, // declares entry point IO built-ins, but these have to be undone. void HlslParseContext::remapNonEntryPointIO(TFunction& function) { // return value if (function.getType().getBasicType() != EbtVoid) clearUniformInputOutput(function.getWritableType().getQualifier()); // parameters. // References to structuredbuffer types are left unmodified for (int i = 0; i < function.getParamCount(); i++) if (!isReference(*function[i].type)) clearUniformInputOutput(function[i].type->getQualifier()); } // Handle function returns, including type conversions to the function return type // if necessary. TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value) { functionReturnsValue = true; if (currentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return", ""); return intermediate.addBranch(EOpReturn, loc); } else if (*currentFunctionType != value->getType()) { value = intermediate.addConversion(EOpReturn, *currentFunctionType, value); if (value && *currentFunctionType != value->getType()) value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value); if (value == nullptr || *currentFunctionType != value->getType()) { error(loc, "type does not match, or is not convertible to, the function's return type", "return", ""); return value; } } return intermediate.addBranch(EOpReturn, value, loc); } void HlslParseContext::handleFunctionArgument(TFunction* function, TIntermTyped*& arguments, TIntermTyped* newArg) { TParameter param = { 0, new TType, nullptr }; param.type->shallowCopy(newArg->getType()); function->addParameter(param); if (arguments) arguments = intermediate.growAggregate(arguments, newArg); else arguments = newArg; } // Position may require special handling: we can optionally invert Y. // See: https://github.com/KhronosGroup/glslang/issues/1173 // https://github.com/KhronosGroup/glslang/issues/494 TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right) { // If we are not asked for Y inversion, use a plain old assign. if (!intermediate.getInvertY()) return intermediate.addAssign(op, left, right, loc); // If we get here, we should invert Y. TIntermAggregate* assignList = nullptr; // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary. TVariable* rhsTempVar = nullptr; rhsTempVar = makeInternalVariable("@position", right->getType()); rhsTempVar->getWritableType().getQualifier().makeTemporary(); { TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc); } // pos.y = -pos.y { const int Y = 1; TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc); TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc); TIntermTyped* index = intermediate.addConstantUnion(Y, loc); TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc); TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc); const TType derefType(right->getType(), 0); lhsElement->setType(derefType); rhsElement->setType(derefType); TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc); assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc)); } // Assign the rhs temp (now with Y inversion) to the final output { TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc)); } assert(assignList != nullptr); assignList->setOperator(EOpSequence); return assignList; } // Clip and cull distance require special handling due to a semantic mismatch. In HLSL, // these can be float scalar, float vector, or arrays of float scalar or float vector. // In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components // (e.g, both x and y components of a float2) out into the destination float array. // // The values are assigned to sequential members of the output array. The inner dimension // is vector components. The outer dimension is array elements. TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId, TIntermTyped* left, TIntermTyped* right) { switch (language) { case EShLangFragment: case EShLangVertex: case EShLangGeometry: break; default: error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", ""); return nullptr; } TVariable** clipCullVar = nullptr; // Figure out if we are assigning to, or from, clip or cull distance. const bool isOutput = isClipOrCullDistance(left->getType()); // This is the rvalue or lvalue holding the clip or cull distance. TIntermTyped* clipCullNode = isOutput ? left : right; // This is the value going into or out of the clip or cull distance. TIntermTyped* internalNode = isOutput ? right : left; const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn; decltype(clipSemanticNSizeIn)* semanticNSize = nullptr; // Refer to either the clip or the cull distance, depending on semantic. switch (builtInType) { case EbvClipDistance: clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput; semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn; break; case EbvCullDistance: clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput; semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn; break; // called invalidly: we expected a clip or a cull distance. // static compile time problem: should not happen. default: assert(0); return nullptr; } // This is the offset in the destination array of a given semantic's data std::array<int, maxClipCullRegs> semanticOffset; // Calculate offset of variable of semantic N in destination array int arrayLoc = 0; int vecItems = 0; for (int x = 0; x < maxClipCullRegs; ++x) { // See if we overflowed the vec4 packing if ((vecItems + (*semanticNSize)[x]) > 4) { arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4 vecItems = 0; } semanticOffset[x] = arrayLoc; vecItems += (*semanticNSize)[x]; arrayLoc += (*semanticNSize)[x]; } // It can have up to 2 array dimensions (in the case of geometry shader inputs) const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes(); const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0; // vector sizes: const int internalVectorSize = internalNode->getType().getVectorSize(); // array sizes, or 1 if it's not an array: const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1); const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1); // The created type may be an array of arrays, e.g, for geometry shader inputs. const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput); // If we haven't created the output already, create it now. if (*clipCullVar == nullptr) { // ClipDistance and CullDistance are handled specially in the entry point input/output copy // algorithm, because they may need to be unpacked from components of vectors (or a scalar) // into a float array, or vice versa. Here, we make the array the right size and type, // which depends on the incoming data, which has several potential dimensions: // * Semantic ID // * vector size // * array size // Of those, semantic ID and array size cannot appear simultaneously. // // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two // array dimensions. The shader's declaration may have one or two array dimensions. One is always // the geometry's dimension. const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed; const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1); const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1; TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1); clipCullType.getQualifier() = clipCullNode->getType().getQualifier(); // Create required array dimension TArraySizes* arraySizes = new TArraySizes; if (isImplicitlyArrayed) arraySizes->addInnerSize(requiredOuterArraySize); arraySizes->addInnerSize(requiredInnerArraySize); clipCullType.transferArraySizes(arraySizes); // Obtain symbol name: we'll use that for the symbol we introduce. TIntermSymbol* sym = clipCullNode->getAsSymbolNode(); assert(sym != nullptr); // We are moving the semantic ID from the layout location, so it is no longer needed or // desired there. clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd; // Create variable and track its linkage *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType); trackLinkage(**clipCullVar); } // Create symbol for the clip or cull variable. TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar); // vector sizes: const int clipCullVectorSize = clipCullSym->getType().getVectorSize(); // array sizes, or 1 if it's not an array: const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes(); const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1; const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0); // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics. // fixBuiltInIoType() should have handled that upstream. assert(clipCullSym->getType().isArray()); assert(clipCullSym->getType().getVectorSize() == 1); assert(clipCullSym->getType().getBasicType() == EbtFloat); // We may be creating multiple sub-assignments. This is an aggregate to hold them. // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed. TIntermAggregate* assignList = nullptr; // Holds individual component assignments as we make them. TIntermTyped* clipCullAssign = nullptr; // If the types are homomorphic, use a simple assign. No need to mess about with // individual components. if (clipCullSym->getType().isArray() == internalNode->getType().isArray() && clipCullInnerArraySize == internalInnerArraySize && clipCullOuterArraySize == internalOuterArraySize && clipCullVectorSize == internalVectorSize) { if (isOutput) clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc); else clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc); assignList = intermediate.growAggregate(assignList, clipCullAssign); assignList->setOperator(EOpSequence); return assignList; } // We are going to copy each component of the internal (per array element if indicated) to sequential // array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along. // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above. int clipCullInnerArrayPos = semanticOffset[semanticId]; int clipCullOuterArrayPos = 0; // Lambda to add an index to a node, set the type of the result, and return the new node. const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* { const TType derefType(node->getType(), 0); node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc); node->setType(derefType); return node; }; // Loop through every component of every element of the internal, and copy to or from the matching external. for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) { for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) { for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) { // clip/cull array member to read from / write to: TIntermTyped* clipCullMember = clipCullSym; // If implicitly arrayed, there is an outer array dimension involved if (isImplicitlyArrayed) clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos); // Index into proper array position for clip cull member clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++); // if needed, start over with next outer array slice. if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) { clipCullInnerArrayPos = semanticOffset[semanticId]; ++clipCullOuterArrayPos; } // internal member to read from / write to: TIntermTyped* internalMember = internalNode; // If internal node has outer array dimension, index appropriately. if (internalArrayDims > 1) internalMember = addIndex(internalMember, internalOuterArrayPos); // If internal node has inner array dimension, index appropriately. if (internalArrayDims > 0) internalMember = addIndex(internalMember, internalInnerArrayPos); // If internal node is a vector, extract the component of interest. if (internalNode->getType().isVector()) internalMember = addIndex(internalMember, internalComponent); // Create an assignment: output from internal to clip cull, or input from clip cull to internal. if (isOutput) clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc); else clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc); // Track assignment in the sequence. assignList = intermediate.growAggregate(assignList, clipCullAssign); } } } assert(assignList != nullptr); assignList->setOperator(EOpSequence); return assignList; } // Some simple source assignments need to be flattened to a sequence // of AST assignments. Catch these and flatten, otherwise, pass through // to intermediate.addAssign(). // // Also, assignment to matrix swizzles requires multiple component assignments, // intercept those as well. TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right) { if (left == nullptr || right == nullptr) return nullptr; // writing to opaques will require fixing transforms if (left->getType().containsOpaque()) intermediate.setNeedsLegalization(); if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle) return handleAssignToMatrixSwizzle(loc, op, left, right); // Return true if the given node is an index operation into a split variable. const auto indexesSplit = [this](const TIntermTyped* node) -> bool { const TIntermBinary* binaryNode = node->getAsBinaryNode(); if (binaryNode == nullptr) return false; return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) && wasSplit(binaryNode->getLeft()); }; // Return true if this stage assigns clip position with potentially inverted Y const auto assignsClipPos = [this](const TIntermTyped* node) -> bool { return node->getType().getQualifier().builtIn == EbvPosition && (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation); }; const bool isSplitLeft = wasSplit(left) || indexesSplit(left); const bool isSplitRight = wasSplit(right) || indexesSplit(right); const bool isFlattenLeft = wasFlattened(left); const bool isFlattenRight = wasFlattened(right); // OK to do a single assign if neither side is split or flattened. Otherwise, // fall through to a member-wise copy. if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) { // Clip and cull distance requires more processing. See comment above assignClipCullDistance. if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) { const bool isOutput = isClipOrCullDistance(left->getType()); const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation; return assignClipCullDistance(loc, op, semanticId, left, right); } else if (assignsClipPos(left)) { // Position can require special handling: see comment above assignPosition return assignPosition(loc, op, left, right); } else if (left->getQualifier().builtIn == EbvSampleMask) { // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars // in the shader. Copy the scalar RHS into the LHS array element zero, if that happens. if (left->isArray() && !right->isArray()) { const TType derefType(left->getType(), 0); left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc); left->setType(derefType); // Fall through to add assign. } } return intermediate.addAssign(op, left, right, loc); } TIntermAggregate* assignList = nullptr; const TVector<TVariable*>* leftVariables = nullptr; const TVector<TVariable*>* rightVariables = nullptr; // A temporary to store the right node's value, so we don't keep indirecting into it // if it's not a simple symbol. TVariable* rhsTempVar = nullptr; // If the RHS is a simple symbol node, we'll copy it for each member. TIntermSymbol* cloneSymNode = nullptr; int memberCount = 0; // Track how many items there are to copy. if (left->getType().isStruct()) memberCount = (int)left->getType().getStruct()->size(); if (left->getType().isArray()) memberCount = left->getType().getCumulativeArraySize(); if (isFlattenLeft) leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members; if (isFlattenRight) { rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members; } else { // The RHS is not flattened. There are several cases: // 1. 1 item to copy: Use the RHS directly. // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp. // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member. if (memberCount <= 1) { // case 1: we'll use the symbol directly below. Nothing to do. } else { if (right->getAsSymbolNode() != nullptr) { // case 2: we'll copy the symbol per iteration below. cloneSymNode = right->getAsSymbolNode(); } else { // case 3: assign to a temp, and indirect into that. rhsTempVar = makeInternalVariable("flattenTemp", right->getType()); rhsTempVar->getWritableType().getQualifier().makeTemporary(); TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc); // Add this to the aggregate being built. assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, noFlattenRHS, right, loc), loc); } } } // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in // variables, which is awkward when copying between split and unsplit structures. This variable tracks // array indirections so they can be percolated from outer structs to inner variables. std::vector <int> arrayElement; TStorageQualifier leftStorage = left->getType().getQualifier().storage; TStorageQualifier rightStorage = right->getType().getQualifier().storage; int leftOffset = findSubtreeOffset(*left); int rightOffset = findSubtreeOffset(*right); const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember, bool flattened) -> TIntermTyped * { const bool split = isLeft ? isSplitLeft : isSplitRight; TIntermTyped* subTree; const TType derefType(type, member); const TVariable* builtInVar = nullptr; if ((flattened || split) && derefType.isBuiltIn()) { auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData( derefType.getQualifier().builtIn, isLeft ? leftStorage : rightStorage)); if (splitPair != splitBuiltIns.end()) builtInVar = splitPair->second; } if (builtInVar != nullptr) { // copy from interstage IO built-in if needed subTree = intermediate.addSymbol(*builtInVar); if (subTree->getType().isArray()) { // Arrayness of builtIn symbols isn't handled by the normal recursion: // it's been extracted and moved to the built-in. if (!arrayElement.empty()) { const TType splitDerefType(subTree->getType(), arrayElement.back()); subTree = intermediate.addIndex(EOpIndexDirect, subTree, intermediate.addConstantUnion(arrayElement.back(), loc), loc); subTree->setType(splitDerefType); } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) { // This might also be a stage with arrayed outputs, in which case there's an index // operation we should transfer to the output builtin. const TType splitDerefType(subTree->getType(), 0); subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree, splitNode->getAsBinaryNode()->getRight(), loc); subTree->setType(splitDerefType); } } } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) { if (isLeft) subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]); else subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]); } else { // Index operator if it's an aggregate, else EOpNull const TOperator accessOp = type.isArray() ? EOpIndexDirect : type.isStruct() ? EOpIndexDirectStruct : EOpNull; if (accessOp == EOpNull) { subTree = splitNode; } else { subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc), loc); const TType splitDerefType(splitNode->getType(), splitMember); subTree->setType(splitDerefType); } } return subTree; }; // Use the proper RHS node: a new symbol from a TVariable, copy // of an TIntermSymbol node, or sometimes the right node directly. right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) : cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) : right; // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the // whole thing. So, we'll resort to an explicit type via std::function. const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight, bool topLevel)> traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight, bool topLevel) -> void { // If we get here, we are assigning to or from a whole array or struct that must be // flattened, so have to do member-by-member assignment: bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel); bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel); if ((left->getType().isArray() || right->getType().isArray()) && (shouldFlattenSubsetLeft || isSplitLeft || shouldFlattenSubsetRight || isSplitRight)) { const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1; const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1; // The arrays might not be the same size, // e.g., if the size has been forced for EbvTessLevelInner/Outer. const int elementsToCopy = std::min(elementsL, elementsR); // array case for (int element = 0; element < elementsToCopy; ++element) { arrayElement.push_back(element); // Add a new AST symbol node if we have a temp variable holding a complex RHS. TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element, shouldFlattenSubsetLeft); TIntermTyped* subRight = getMember(false, right->getType(), element, right, element, shouldFlattenSubsetRight); TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft, element, shouldFlattenSubsetLeft) : subLeft; TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight, element, shouldFlattenSubsetRight) : subRight; traverse(subLeft, subRight, subSplitLeft, subSplitRight, false); arrayElement.pop_back(); } } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft || shouldFlattenSubsetRight || isSplitRight)) { // struct case const auto& membersL = *left->getType().getStruct(); const auto& membersR = *right->getType().getStruct(); // These track the members in the split structures corresponding to the same in the unsplit structures, // which we traverse in parallel. int memberL = 0; int memberR = 0; // Handle empty structure assignment if (int(membersL.size()) == 0 && int(membersR.size()) == 0) assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc); for (int member = 0; member < int(membersL.size()); ++member) { const TType& typeL = *membersL[member].type; const TType& typeR = *membersR[member].type; TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member, shouldFlattenSubsetLeft); TIntermTyped* subRight = getMember(false, right->getType(), member, right, member, shouldFlattenSubsetRight); // If there is no splitting, use the same values to avoid inefficiency. TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft, memberL, shouldFlattenSubsetLeft) : subLeft; TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight, memberR, shouldFlattenSubsetRight) : subRight; if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) { // Clip and cull distance built-in assignment is complex in its own right, and is handled in // a separate function dedicated to that task. See comment above assignClipCullDistance; const bool isOutput = isClipOrCullDistance(subSplitLeft->getType()); // Since all clip/cull semantics boil down to the same built-in type, we need to get the // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping. const TType derefType((isOutput ? left : right)->getType(), member); const int semanticId = derefType.getQualifier().layoutLocation; TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId, subSplitLeft, subSplitRight); assignList = intermediate.growAggregate(assignList, clipCullAssign, loc); } else if (assignsClipPos(subSplitLeft)) { // Position can require special handling: see comment above assignPosition TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight); assignList = intermediate.growAggregate(assignList, positionAssign, loc); } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight && !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) { // If this is the final flattening (no nested types below to flatten) // we'll copy the member, else recurse into the type hierarchy. // However, if splitting the struct, that means we can copy a whole // subtree here IFF it does not itself contain any interstage built-in // IO variables, so we only have to recurse into it if there's something // for splitting to do. That can save a lot of AST verbosity for // a bunch of memberwise copies. assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subSplitLeft, subSplitRight, loc), loc); } else { traverse(subLeft, subRight, subSplitLeft, subSplitRight, false); } memberL += (typeL.isBuiltIn() ? 0 : 1); memberR += (typeR.isBuiltIn() ? 0 : 1); } } else { // Member copy assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc); } }; TIntermTyped* splitLeft = left; TIntermTyped* splitRight = right; // If either left or right was a split structure, we must read or write it, but still have to // parallel-recurse through the unsplit structure to identify the built-in IO vars. // The left can be either a symbol, or an index into a symbol (e.g, array reference) if (isSplitLeft) { if (indexesSplit(left)) { // Index case: Refer to the indexed symbol, if the left is an index operator. const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode(); TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc); splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo, left->getAsBinaryNode()->getRight(), loc); const TType derefType(splitLeftNonIo->getType(), 0); splitLeft->setType(derefType); } else { // Symbol case: otherwise, if not indexed, we have the symbol directly. const TIntermSymbol* symNode = left->getAsSymbolNode(); splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc); } } if (isSplitRight) splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc); // This makes the whole assignment, recursing through subtypes as needed. traverse(left, right, splitLeft, splitRight, true); assert(assignList != nullptr); assignList->setOperator(EOpSequence); return assignList; } // An assignment to matrix swizzle must be decomposed into individual assignments. // These must be selected component-wise from the RHS and stored component-wise // into the LHS. TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right) { assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle); if (op != EOpAssign) error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", ""); // isolate the matrix and swizzle nodes TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped(); const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence(); // if the RHS isn't already a simple vector, let's store into one TIntermSymbol* vector = right->getAsSymbolNode(); TIntermTyped* vectorAssign = nullptr; if (vector == nullptr) { // create a new intermediate vector variable to assign to TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2); vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc); // assign the right to the new vector vectorAssign = handleAssign(loc, op, vector, right); } // Assign the vector components to the matrix components. // Store this as a sequence, so a single aggregate node represents this // entire operation. TIntermAggregate* result = intermediate.makeAggregate(vectorAssign); TType columnType(matrix->getType(), 0); TType componentType(columnType, 0); TType indexType(EbtInt); for (int i = 0; i < (int)swizzle.size(); i += 2) { // the right component, single index into the RHS vector TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector, intermediate.addConstantUnion(i/2, loc), loc); // the left component, double index into the LHS matrix TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix, intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(), indexType, loc), loc); leftComp->setType(columnType); leftComp = intermediate.addIndex(EOpIndexDirect, leftComp, intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(), indexType, loc), loc); leftComp->setType(componentType); // Add the assignment to the aggregate result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc)); } result->setOp(EOpSequence); return result; } // // HLSL atomic operations have slightly different arguments than // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic. // This provides the post-decomposition equivalent opcode. // TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage) { switch (op) { case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd; case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd; case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap; case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax; case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin; case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr; case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor; case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange; case EOpInterlockedCompareStore: // TODO: ... default: error(loc, "unknown atomic operation", "unknown op", ""); return EOpNull; } } // // Create a combined sampler/texture from separate sampler and texture. // TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, TIntermTyped* argSampler) { TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler); txcombine->getSequence().push_back(argTex); txcombine->getSequence().push_back(argSampler); TSampler samplerType = argTex->getType().getSampler(); samplerType.combined = true; // TODO: // This block exists until the spec no longer requires shadow modes on texture objects. // It can be deleted after that, along with the shadowTextureVariant member. { const bool shadowMode = argSampler->getType().getSampler().shadow; TIntermSymbol* texSymbol = argTex->getAsSymbolNode(); if (texSymbol == nullptr) texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode(); if (texSymbol == nullptr) { error(loc, "unable to find texture symbol", "", ""); return nullptr; } // This forces the texture's shadow state to be the sampler's // shadow state. This depends on downstream optimization to // DCE one variant in [shadow, nonshadow] if both are present, // or the SPIR-V module would be invalid. int newId = texSymbol->getId(); // Check to see if this texture has been given a shadow mode already. // If so, look up the one we already have. const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId()); if (textureShadowEntry != textureShadowVariant.end()) newId = textureShadowEntry->second->get(shadowMode); else textureShadowVariant[texSymbol->getId()] = new tShadowTextureSymbols; // Sometimes we have to create another symbol (if this texture has been seen before, // and we haven't created the form for this shadow mode). if (newId == -1) { TType texType; texType.shallowCopy(argTex->getType()); texType.getSampler().shadow = shadowMode; // set appropriate shadow mode. globalQualifierFix(loc, texType.getQualifier()); TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType); trackLinkage(*newTexture); newId = newTexture->getUniqueId(); } assert(newId != -1); if (textureShadowVariant.find(newId) == textureShadowVariant.end()) textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()]; textureShadowVariant[newId]->set(shadowMode, newId); // Remember this shadow mode in the texture and the merged type. argTex->getWritableType().getSampler().shadow = shadowMode; samplerType.shadow = shadowMode; texSymbol->switchId(newId); } txcombine->setType(TType(samplerType, EvqTemporary)); txcombine->setLoc(loc); return txcombine; } // Return true if this a buffer type that has an associated counter buffer. bool HlslParseContext::hasStructBuffCounter(const TType& type) const { switch (type.getQualifier().declaredBuiltIn) { case EbvAppendConsume: // fall through... case EbvRWStructuredBuffer: // ... return true; default: return false; // the other structuredbuffer types do not have a counter. } } void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type) { // Counter type TType* counterType = new TType(EbtUint, EvqBuffer); counterType->setFieldName(intermediate.implicitCounterName); TTypeList* blockStruct = new TTypeList; TTypeLoc member = { counterType, loc }; blockStruct->push_back(member); TType blockType(blockStruct, "", counterType->getQualifier()); blockType.getQualifier().storage = EvqBuffer; type.shallowCopy(blockType); shareStructBufferType(type); } // declare counter for a structured buffer type void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name) { // Bail out if not a struct buffer if (! isStructBufferType(bufferType)) return; if (! hasStructBuffCounter(bufferType)) return; TType blockType; counterBufferType(loc, blockType); TString* blockName = new TString(intermediate.addCounterBufferName(name)); // Counter buffer is not yet in use structBufferCounter[*blockName] = false; shareStructBufferType(blockType); declareBlock(loc, blockType, blockName); } // return the counter that goes with a given structuredbuffer TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer) { // Bail out if not a struct buffer if (buffer == nullptr || ! isStructBufferType(buffer->getType())) return nullptr; const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName())); // Mark the counter as being used structBufferCounter[counterBlockName] = true; TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc); counterMember->setType(TType(EbtUint)); return counterMember; } // // Decompose structure buffer methods into AST // void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) { if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr) return; const TOperator op = node->getAsOperator()->getOp(); TIntermAggregate* argAggregate = arguments->getAsAggregate(); // Buffer is the object upon which method is called, so always arg 0 TIntermTyped* bufferObj = nullptr; // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params. if (argAggregate) { if (argAggregate->getSequence().empty()) return; bufferObj = argAggregate->getSequence()[0]->getAsTyped(); } else { bufferObj = arguments->getAsSymbolNode(); } if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr) return; // Some methods require a hidden internal counter, obtained via getStructBufferCounter(). // This lambda adds something to it and returns the old value. const auto incDecCounter = [&](int incval) -> TIntermTyped* { TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true); TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member if (counter == nullptr) return nullptr; TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd); counterIncrement->setType(TType(EbtUint, EvqTemporary)); counterIncrement->setLoc(loc); counterIncrement->getSequence().push_back(counter); counterIncrement->getSequence().push_back(incrementValue); return counterIncrement; }; // Index to obtain the runtime sized array out of the buffer. TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj); if (argArray == nullptr) return; // It might not be a struct buffer method. switch (op) { case EOpMethodLoad: { TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index const TType& bufferType = bufferObj->getType(); const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn; // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address // buffer then, but that's what it calls itself. const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer || builtInType == EbvRWByteAddressBuffer); if (isByteAddressBuffer) argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt)); // Index into the array to find the item being loaded. const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; node = intermediate.addIndex(idxOp, argArray, argIndex, loc); const TType derefType(argArray->getType(), 0); node->setType(derefType); } break; case EOpMethodLoad2: case EOpMethodLoad3: case EOpMethodLoad4: { TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index TOperator constructOp = EOpNull; int size = 0; switch (op) { case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break; case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break; case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break; default: assert(0); } TIntermTyped* body = nullptr; // First, we'll store the address in a variable to avoid multiple shifts // (we must convert the byte address to an item address) TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt)); TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary)); TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc); body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc)); TIntermTyped* vec = nullptr; // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2 // address conversion. for (int idx=0; idx<size; ++idx) { TIntermTyped* offsetIdx = byteAddrIdxVar; // add index offset if (idx != 0) offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, intermediate.addConstantUnion(idx, loc, true), loc, TType(EbtInt)); const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc); TType derefType(argArray->getType(), 0); derefType.getQualifier().makeTemporary(); indexVal->setType(derefType); vec = intermediate.growAggregate(vec, indexVal); } vec->setType(TType(argArray->getBasicType(), EvqTemporary, size)); vec->getAsAggregate()->setOperator(constructOp); body = intermediate.growAggregate(body, vec); body->setType(vec->getType()); body->getAsAggregate()->setOperator(EOpSequence); node = body; } break; case EOpMethodStore: case EOpMethodStore2: case EOpMethodStore3: case EOpMethodStore4: { TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value // Index into the array to find the item being loaded. // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address // buffer then, but that's what it calls itself). int size = 0; switch (op) { case EOpMethodStore: size = 1; break; case EOpMethodStore2: size = 2; break; case EOpMethodStore3: size = 3; break; case EOpMethodStore4: size = 4; break; default: assert(0); } TIntermAggregate* body = nullptr; // First, we'll store the address in a variable to avoid multiple shifts // (we must convert the byte address to an item address) TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt)); TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary)); TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc); body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc)); for (int idx=0; idx<size; ++idx) { TIntermTyped* offsetIdx = byteAddrIdxVar; TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); // add index offset if (idx != 0) offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt)); const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc); const TType derefType(argArray->getType(), 0); lValue->setType(derefType); TIntermTyped* rValue; if (size == 1) { rValue = argValue; } else { rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc); const TType indexType(argValue->getType(), 0); rValue->setType(indexType); } TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc); body = intermediate.growAggregate(body, assign); } body->setOperator(EOpSequence); node = body; } break; case EOpMethodGetDimensions: { const int numArgs = (int)argAggregate->getSequence().size(); TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride TIntermAggregate* body = nullptr; // Length output: if (argArray->getType().isSizedArray()) { const int length = argArray->getType().getOuterArraySize(); TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, intermediate.addConstantUnion(length, loc, true), loc); body = intermediate.growAggregate(body, assign, loc); } else { TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray, argNumItems->getType()); TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc); body = intermediate.growAggregate(body, assign, loc); } // Stride output: if (argStride != nullptr) { int size; int stride; intermediate.getBaseAlignment(argArray->getType(), size, stride, false, argArray->getType().getQualifier().layoutMatrix == ElmRowMajor); TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride, intermediate.addConstantUnion(stride, loc, true), loc); body = intermediate.growAggregate(body, assign); } body->setOperator(EOpSequence); node = body; } break; case EOpInterlockedAdd: case EOpInterlockedAnd: case EOpInterlockedExchange: case EOpInterlockedMax: case EOpInterlockedMin: case EOpInterlockedOr: case EOpInterlockedXor: case EOpInterlockedCompareExchange: case EOpInterlockedCompareStore: { // We'll replace the first argument with the block dereference, and let // downstream decomposition handle the rest. TIntermSequence& sequence = argAggregate->getSequence(); TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt)); const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc); const TType derefType(argArray->getType(), 0); element->setType(derefType); // Replace the numeric byte offset parameter with array reference. sequence[1] = element; sequence.erase(sequence.begin(), sequence.begin()+1); } break; case EOpMethodIncrementCounter: { node = incDecCounter(1); break; } case EOpMethodDecrementCounter: { TIntermTyped* preIncValue = incDecCounter(-1); // result is original value node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc, preIncValue->getType()); break; } case EOpMethodAppend: { TIntermTyped* oldCounter = incDecCounter(1); TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc); TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped(); const TType derefType(argArray->getType(), 0); lValue->setType(derefType); node = intermediate.addAssign(EOpAssign, lValue, rValue, loc); break; } case EOpMethodConsume: { TIntermTyped* oldCounter = incDecCounter(-1); TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter, intermediate.addConstantUnion(-1, loc, true), loc, oldCounter->getType()); node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc); const TType derefType(argArray->getType(), 0); node->setType(derefType); break; } default: break; // most pass through unchanged } } // Create array of standard sample positions for given sample count. // TODO: remove when a real method to query sample pos exists in SPIR-V. TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count) { struct tSamplePos { float x, y; }; static const tSamplePos pos1[] = { { 0.0/16.0, 0.0/16.0 }, }; // standard sample positions for 2, 4, 8, and 16 samples. static const tSamplePos pos2[] = { { 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 }, }; static const tSamplePos pos4[] = { {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 }, }; static const tSamplePos pos8[] = { { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 }, {-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 }, }; static const tSamplePos pos16[] = { { 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 }, {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 }, {-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 }, {-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 }, }; const tSamplePos* sampleLoc = nullptr; int numSamples = count; switch (count) { case 2: sampleLoc = pos2; break; case 4: sampleLoc = pos4; break; case 8: sampleLoc = pos8; break; case 16: sampleLoc = pos16; break; default: sampleLoc = pos1; numSamples = 1; } TConstUnionArray* values = new TConstUnionArray(numSamples*2); for (int pos=0; pos<count; ++pos) { TConstUnion x, y; x.setDConst(sampleLoc[pos].x); y.setDConst(sampleLoc[pos].y); (*values)[pos*2+0] = x; (*values)[pos*2+1] = y; } TType retType(EbtFloat, EvqConst, 2); if (numSamples != 1) { TArraySizes* arraySizes = new TArraySizes; arraySizes->addInnerSize(numSamples); retType.transferArraySizes(arraySizes); } return new TIntermConstantUnion(*values, retType); } // // Decompose DX9 and DX10 sample intrinsics & object methods into AST // void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) { if (node == nullptr || !node->getAsOperator()) return; // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it. const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* { result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize())); TIntermTyped* convertedResult = nullptr; TType retType; getTextureReturnType(sampler, retType); if (retType.isStruct()) { // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here) TIntermAggregate* conversionAggregate = new TIntermAggregate; convertedResult = conversionAggregate; // Convert vector output to return structure. We will need a temp symbol to copy the results to. TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType); // We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the // sample each time we'll index into the result, so we'll copy to this, and index into the copy. TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType()); // Initial copy from texture to our sample result shadow. TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc), result, loc); conversionAggregate->getSequence().push_back(shadowCopy); unsigned vec4Pos = 0; for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) { const TType memberType(retType, m); // dereferenced type of the member we're about to assign. // Check for bad struct members. This should have been caught upstream. Complain, because // wwe don't know what to do with it. This algorithm could be generalized to handle // other things, e.g, sub-structures, but HLSL doesn't allow them. if (!memberType.isVector() && !memberType.isScalar()) { error(loc, "expected: scalar or vector type in texture structure", "", ""); return nullptr; } // Index into the struct variable to find the member to assign. TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct, intermediate.addSymbol(*structVar, loc), intermediate.addConstantUnion(m, loc), loc); structMember->setType(memberType); // Assign each component of (possible) vector in struct member. for (int component = 0; component < memberType.getVectorSize(); ++component) { TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect, intermediate.addSymbol(*sampleShadow, loc), intermediate.addConstantUnion(vec4Pos++, loc), loc); vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1)); TIntermTyped* memberAssign = nullptr; if (memberType.isVector()) { // Vector member: we need to create an access chain to the vector component. TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember, intermediate.addConstantUnion(component, loc), loc); memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc); } else { // Scalar member: we can assign to it directly. memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc); } conversionAggregate->getSequence().push_back(memberAssign); } } // Add completed variable so the expression results in the whole struct value we just built. conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc)); // Make it a sequence. intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc); } else { // vector clamp the output if template vector type is smaller than sample result. if (retType.getVectorSize() < node->getVectorSize()) { // Too many components. Construct shorter vector from it. const TOperator op = intermediate.mapTypeToConstructorOp(retType); convertedResult = constructBuiltIn(retType, op, result, loc, false); } else { // Enough components. Use directly. convertedResult = result; } } convertedResult->setLoc(loc); return convertedResult; }; const TOperator op = node->getAsOperator()->getOp(); const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; // Bail out if not a sampler method. // Note though this is odd to do before checking the op, because the op // could be something that takes the arguments, and the function in question // takes the result of the op. So, this is not the final word. if (arguments != nullptr) { if (argAggregate == nullptr) { if (arguments->getAsTyped()->getBasicType() != EbtSampler) return; } else { if (argAggregate->getSequence().size() == 0 || argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler) return; } } switch (op) { // **** DX9 intrinsics: **** case EOpTexture: { // Texture with ddx & ddy is really gradient form in HLSL if (argAggregate->getSequence().size() == 4) node->getAsAggregate()->setOperator(EOpTextureGrad); break; } case EOpTextureBias: { TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord // HLSL puts bias in W component of coordinate. We extract it and add it to // the argument list, instead TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); TOperator constructOp = EOpNull; const TSampler& sampler = arg0->getType().getSampler(); switch (sampler.dim) { case Esd1D: constructOp = EOpConstructFloat; break; // 1D case Esd2D: constructOp = EOpConstructVec2; break; // 2D case Esd3D: constructOp = EOpConstructVec3; break; // 3D case EsdCube: constructOp = EOpConstructVec3; break; // also 3D default: break; } TIntermAggregate* constructCoord = new TIntermAggregate(constructOp); constructCoord->getSequence().push_back(arg1); constructCoord->setLoc(loc); // The input vector should never be less than 2, since there's always a bias. // The max is for safety, and should be a no-op. constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0))); TIntermAggregate* tex = new TIntermAggregate(EOpTexture); tex->getSequence().push_back(arg0); // sampler tex->getSequence().push_back(constructCoord); // coordinate tex->getSequence().push_back(bias); // bias node = convertReturn(tex, sampler); break; } // **** DX10 methods: **** case EOpMethodSample: // fall through case EOpMethodSampleBias: // ... { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* argBias = nullptr; TIntermTyped* argOffset = nullptr; const TSampler& sampler = argTex->getType().getSampler(); int nextArg = 3; if (op == EOpMethodSampleBias) // SampleBias has a bias arg argBias = argAggregate->getSequence()[nextArg++]->getAsTyped(); TOperator textureOp = EOpTexture; if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form textureOp = EOpTextureOffset; argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped(); } TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); TIntermAggregate* txsample = new TIntermAggregate(textureOp); txsample->getSequence().push_back(txcombine); txsample->getSequence().push_back(argCoord); if (argBias != nullptr) txsample->getSequence().push_back(argBias); if (argOffset != nullptr) txsample->getSequence().push_back(argOffset); node = convertReturn(txsample, sampler); break; } case EOpMethodSampleGrad: // ... { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped(); TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped(); TIntermTyped* argOffset = nullptr; const TSampler& sampler = argTex->getType().getSampler(); TOperator textureOp = EOpTextureGrad; if (argAggregate->getSequence().size() == 6) { // last parameter is offset form textureOp = EOpTextureGradOffset; argOffset = argAggregate->getSequence()[5]->getAsTyped(); } TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); TIntermAggregate* txsample = new TIntermAggregate(textureOp); txsample->getSequence().push_back(txcombine); txsample->getSequence().push_back(argCoord); txsample->getSequence().push_back(argDDX); txsample->getSequence().push_back(argDDY); if (argOffset != nullptr) txsample->getSequence().push_back(argOffset); node = convertReturn(txsample, sampler); break; } case EOpMethodGetDimensions: { // AST returns a vector of results, which we break apart component-wise into // separate values to assign to the HLSL method's outputs, ala: // tx . GetDimensions(width, height); // float2 sizeQueryTemp = EOpTextureQuerySize // width = sizeQueryTemp.X; // height = sizeQueryTemp.Y; TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); const TType& texType = argTex->getType(); assert(texType.getBasicType() == EbtSampler); const TSampler& sampler = texType.getSampler(); const TSamplerDim dim = sampler.dim; const bool isImage = sampler.isImage(); const bool isMs = sampler.isMultiSample(); const int numArgs = (int)argAggregate->getSequence().size(); int numDims = 0; switch (dim) { case Esd1D: numDims = 1; break; // W case Esd2D: numDims = 2; break; // W, H case Esd3D: numDims = 3; break; // W, H, D case EsdCube: numDims = 2; break; // W, H (cube) case EsdBuffer: numDims = 1; break; // W (buffers) case EsdRect: numDims = 2; break; // W, H (rect) default: assert(0 && "unhandled texture dimension"); } // Arrayed adds another dimension for the number of array elements if (sampler.isArrayed()) ++numDims; // Establish whether the method itself is querying mip levels. This can be false even // if the underlying query requires a MIP level, due to the available HLSL method overloads. const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0))); // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query). // True if: // 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query) // or, // 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec) const bool mipRequired = ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1... mipQuery; // 2... // AST assumes integer return. Will be converted to float if required. TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize); sizeQuery->getSequence().push_back(argTex); // If we're building an LOD query, add the LOD. if (mipRequired) { // If the base HLSL query had no MIP level given, use level 0. TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() : intermediate.addConstantUnion(0, loc, true); sizeQuery->getSequence().push_back(queryLod); } sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims)); sizeQuery->setLoc(loc); // Return value from size query TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType()); tempArg->getWritableType().getQualifier().makeTemporary(); TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*tempArg, loc), sizeQuery, loc); // Compound statement for assigning outputs TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc); // Index of first output parameter const int outParamBase = mipQuery ? 2 : 1; for (int compNum = 0; compNum < numDims; ++compNum) { TIntermTyped* indexedOut = nullptr; TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc); if (numDims > 1) { TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true); indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc); indexedOut->setType(TType(EbtUint, EvqTemporary, 1)); indexedOut->setLoc(loc); } else { indexedOut = sizeQueryReturn; } TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped(); TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc); compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); } // handle mip level parameter if (mipQuery) { TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels); levelsQuery->getSequence().push_back(argTex); levelsQuery->setType(TType(EbtUint, EvqTemporary, 1)); levelsQuery->setLoc(loc); TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc); compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); } // 2DMS formats query # samples, which needs a different query op if (sampler.isMultiSample()) { TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); samplesQuery->getSequence().push_back(argTex); samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); samplesQuery->setLoc(loc); TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc); compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); } compoundStatement->setOperator(EOpSequence); compoundStatement->setLoc(loc); compoundStatement->setType(TType(EbtVoid)); node = compoundStatement; break; } case EOpMethodSampleCmp: // fall through... case EOpMethodSampleCmpLevelZero: { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped(); TIntermTyped* argOffset = nullptr; // Sampler argument should be a sampler. if (argSamp->getType().getBasicType() != EbtSampler) { error(loc, "expected: sampler type", "", ""); return; } // Sampler should be a SamplerComparisonState if (! argSamp->getType().getSampler().isShadow()) { error(loc, "expected: SamplerComparisonState", "", ""); return; } // optional offset value if (argAggregate->getSequence().size() > 4) argOffset = argAggregate->getSequence()[4]->getAsTyped(); const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp // AST wants comparison value as one of the texture coordinates TOperator constructOp = EOpNull; switch (coordDimWithCmpVal) { // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val case 2: constructOp = EOpConstructVec2; break; case 3: constructOp = EOpConstructVec3; break; case 4: constructOp = EOpConstructVec4; break; case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg. default: assert(0); break; } TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp); coordWithCmp->getSequence().push_back(argCoord); if (coordDimWithCmpVal != 5) // cube array shadow is special. coordWithCmp->getSequence().push_back(argCmpVal); coordWithCmp->setLoc(loc); coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4))); TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture); if (argOffset != nullptr) textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset); // Create combined sampler & texture op TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); TIntermAggregate* txsample = new TIntermAggregate(textureOp); txsample->getSequence().push_back(txcombine); txsample->getSequence().push_back(coordWithCmp); if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord. txsample->getSequence().push_back(argCmpVal); // the LevelZero form uses 0 as an explicit LOD if (op == EOpMethodSampleCmpLevelZero) txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true)); // Add offset if present if (argOffset != nullptr) txsample->getSequence().push_back(argOffset); txsample->setType(node->getType()); txsample->setLoc(loc); node = txsample; break; } case EOpMethodLoad: { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argOffset = nullptr; TIntermTyped* lodComponent = nullptr; TIntermTyped* coordSwizzle = nullptr; const TSampler& sampler = argTex->getType().getSampler(); const bool isMS = sampler.isMultiSample(); const bool isBuffer = sampler.dim == EsdBuffer; const bool isImage = sampler.isImage(); const TBasicType coordBaseType = argCoord->getType().getBasicType(); // Last component of coordinate is the mip level, for non-MS. we separate them here: if (isMS || isBuffer || isImage) { // MS, Buffer, and Image have no LOD coordSwizzle = argCoord; } else { // Extract coordinate int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1); TSwizzleSelectors<TVectorSelector> coordFields; for (int i = 0; i < swizzleSize; ++i) coordFields.push_back(i); TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc); coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc); coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size())); // Extract LOD TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true); lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc); lodComponent->setType(TType(coordBaseType, EvqTemporary, 1)); } const int numArgs = (int)argAggregate->getSequence().size(); const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4)); // Create texel fetch const TOperator fetchOp = (isImage ? EOpImageLoad : hasOffset ? EOpTextureFetchOffset : EOpTextureFetch); TIntermAggregate* txfetch = new TIntermAggregate(fetchOp); // Build up the fetch txfetch->getSequence().push_back(argTex); txfetch->getSequence().push_back(coordSwizzle); if (isMS) { // add 2DMS sample index TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped(); txfetch->getSequence().push_back(argSampleIdx); } else if (isBuffer) { // Nothing else to do for buffers. } else if (isImage) { // Nothing else to do for images. } else { // 2DMS and buffer have no LOD, but everything else does. txfetch->getSequence().push_back(lodComponent); } // Obtain offset arg, if there is one. if (hasOffset) { const int offsetPos = (isMS ? 3 : 2); argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped(); txfetch->getSequence().push_back(argOffset); } node = convertReturn(txfetch, sampler); break; } case EOpMethodSampleLevel: { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped(); TIntermTyped* argOffset = nullptr; const TSampler& sampler = argTex->getType().getSampler(); const int numArgs = (int)argAggregate->getSequence().size(); if (numArgs == 5) // offset, if present argOffset = argAggregate->getSequence()[4]->getAsTyped(); const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset); TIntermAggregate* txsample = new TIntermAggregate(textureOp); TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); txsample->getSequence().push_back(txcombine); txsample->getSequence().push_back(argCoord); txsample->getSequence().push_back(argLod); if (argOffset != nullptr) txsample->getSequence().push_back(argOffset); node = convertReturn(txsample, sampler); break; } case EOpMethodGather: { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* argOffset = nullptr; // Offset is optional if (argAggregate->getSequence().size() > 3) argOffset = argAggregate->getSequence()[3]->getAsTyped(); const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset); TIntermAggregate* txgather = new TIntermAggregate(textureOp); TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); txgather->getSequence().push_back(txcombine); txgather->getSequence().push_back(argCoord); // Offset if not given is implicitly channel 0 (red) if (argOffset != nullptr) txgather->getSequence().push_back(argOffset); txgather->setType(node->getType()); txgather->setLoc(loc); node = txgather; break; } case EOpMethodGatherRed: // fall through... case EOpMethodGatherGreen: // ... case EOpMethodGatherBlue: // ... case EOpMethodGatherAlpha: // ... case EOpMethodGatherCmpRed: // ... case EOpMethodGatherCmpGreen: // ... case EOpMethodGatherCmpBlue: // ... case EOpMethodGatherCmpAlpha: // ... { int channel = 0; // the channel we are gathering int cmpValues = 0; // 1 if there is a compare value (handier than a bool below) switch (op) { case EOpMethodGatherCmpRed: cmpValues = 1; // fall through case EOpMethodGatherRed: channel = 0; break; case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through case EOpMethodGatherGreen: channel = 1; break; case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through case EOpMethodGatherBlue: channel = 2; break; case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through case EOpMethodGatherAlpha: channel = 3; break; default: assert(0); break; } // For now, we have nothing to map the component-wise comparison forms // to, because neither GLSL nor SPIR-V has such an opcode. Issue an // unimplemented error instead. Most of the machinery is here if that // should ever become available. However, red can be passed through // to OpImageDrefGather. G/B/A cannot, because that opcode does not // accept a component. if (cmpValues != 0 && op != EOpMethodGatherCmpRed) { error(loc, "unimplemented: component-level gather compare", "", ""); return; } int arg = 0; TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped(); TIntermTyped* argOffset = nullptr; TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr }; // TIntermTyped* argStatus = nullptr; // TODO: residency TIntermTyped* argCmp = nullptr; const TSamplerDim dim = argTex->getType().getSampler().dim; const int argSize = (int)argAggregate->getSequence().size(); bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues)); bool hasOffset1 = false; bool hasOffset4 = false; // Sampler argument should be a sampler. if (argSamp->getType().getBasicType() != EbtSampler) { error(loc, "expected: sampler type", "", ""); return; } // Cmp forms require SamplerComparisonState if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) { error(loc, "expected: SamplerComparisonState", "", ""); return; } // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets. if (dim == Esd2D) { hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues)); hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues)); } assert(!(hasOffset1 && hasOffset4)); TOperator textureOp = EOpTextureGather; // Compare forms have compare value if (cmpValues != 0) argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); // Some forms have single offset if (hasOffset1) { textureOp = EOpTextureGatherOffset; // single offset form argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); } // Some forms have 4 gather offsets if (hasOffset4) { textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form for (int offsetNum = 0; offsetNum < 4; ++offsetNum) argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped(); } // Residency status if (hasStatus) { // argStatus = argAggregate->getSequence()[arg++]->getAsTyped(); error(loc, "unimplemented: residency status", "", ""); return; } TIntermAggregate* txgather = new TIntermAggregate(textureOp); TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true); txgather->getSequence().push_back(txcombine); txgather->getSequence().push_back(argCoord); // AST wants an array of 4 offsets, where HLSL has separate args. Here // we construct an array from the separate args. if (hasOffset4) { TType arrayType(EbtInt, EvqTemporary, 2); TArraySizes* arraySizes = new TArraySizes; arraySizes->addInnerSize(4); arrayType.transferArraySizes(arraySizes); TIntermAggregate* initList = new TIntermAggregate(EOpNull); for (int offsetNum = 0; offsetNum < 4; ++offsetNum) initList->getSequence().push_back(argOffsets[offsetNum]); argOffset = addConstructor(loc, initList, arrayType); } // Add comparison value if we have one if (argCmp != nullptr) txgather->getSequence().push_back(argCmp); // Add offset (either 1, or an array of 4) if we have one if (argOffset != nullptr) txgather->getSequence().push_back(argOffset); // Add channel value if the sampler is not shadow if (! argSamp->getType().getSampler().isShadow()) txgather->getSequence().push_back(argChannel); txgather->setType(node->getType()); txgather->setLoc(loc); node = txgather; break; } case EOpMethodCalculateLevelOfDetail: case EOpMethodCalculateLevelOfDetailUnclamped: { TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod); TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); txquerylod->getSequence().push_back(txcombine); txquerylod->getSequence().push_back(argCoord); TIntermTyped* lodComponent = intermediate.addConstantUnion(0, loc, true); TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc); lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1)); node = lodComponentIdx; // We cannot currently obtain the unclamped LOD if (op == EOpMethodCalculateLevelOfDetailUnclamped) error(loc, "unimplemented: CalculateLevelOfDetailUnclamped", "", ""); break; } case EOpMethodGetSamplePosition: { // TODO: this entire decomposition exists because there is not yet a way to query // the sample position directly through SPIR-V. Instead, we return fixed sample // positions for common cases. *** If the sample positions are set differently, // this will be wrong. *** TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped(); TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); samplesQuery->getSequence().push_back(argTex); samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); samplesQuery->setLoc(loc); TIntermAggregate* compoundStatement = nullptr; TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint)); outSampleCount->getWritableType().getQualifier().makeTemporary(); TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc), samplesQuery, loc); compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); TIntermTyped* idxtest[4]; // Create tests against 2, 4, 8, and 16 sample values int count = 0; for (int val = 2; val <= 16; val *= 2) idxtest[count++] = intermediate.addBinaryNode(EOpEqual, intermediate.addSymbol(*outSampleCount, loc), intermediate.addConstantUnion(val, loc), loc, TType(EbtBool)); const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; // Create index ops into position arrays given sample index. // TODO: should it be clamped? TIntermTyped* index[4]; count = 0; for (int val = 2; val <= 16; val *= 2) { index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc); index[count++]->setType(TType(EbtFloat, EvqTemporary, 2)); } // Create expression as: // (sampleCount == 2) ? pos2[idx] : // (sampleCount == 4) ? pos4[idx] : // (sampleCount == 8) ? pos8[idx] : // (sampleCount == 16) ? pos16[idx] : float2(0,0); TIntermTyped* test = intermediate.addSelection(idxtest[0], index[0], intermediate.addSelection(idxtest[1], index[1], intermediate.addSelection(idxtest[2], index[2], intermediate.addSelection(idxtest[3], index[3], getSamplePosArray(1), loc), loc), loc), loc); compoundStatement = intermediate.growAggregate(compoundStatement, test); compoundStatement->setOperator(EOpSequence); compoundStatement->setLoc(loc); compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2)); node = compoundStatement; break; } case EOpSubpassLoad: { const TIntermTyped* argSubpass = argAggregate ? argAggregate->getSequence()[0]->getAsTyped() : arguments->getAsTyped(); const TSampler& sampler = argSubpass->getType().getSampler(); // subpass load: the multisample form is overloaded. Here, we convert that to // the EOpSubpassLoadMS opcode. if (argAggregate != nullptr && argAggregate->getSequence().size() > 1) node->getAsOperator()->setOp(EOpSubpassLoadMS); node = convertReturn(node, sampler); break; } default: break; // most pass through unchanged } } // // Decompose geometry shader methods // void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) { if (node == nullptr || !node->getAsOperator()) return; const TOperator op = node->getAsOperator()->getOp(); const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; switch (op) { case EOpMethodAppend: if (argAggregate) { // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol. if (language != EShLangGeometry) { node = nullptr; return; } TIntermAggregate* sequence = nullptr; TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex); emit->setLoc(loc); emit->setType(TType(EbtVoid)); TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped(); // This will be patched in finalization during finalizeAppendMethods() sequence = intermediate.growAggregate(sequence, data, loc); sequence = intermediate.growAggregate(sequence, emit); sequence->setOperator(EOpSequence); sequence->setLoc(loc); sequence->setType(TType(EbtVoid)); gsAppends.push_back({sequence, loc}); node = sequence; } break; case EOpMethodRestartStrip: { // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol. if (language != EShLangGeometry) { node = nullptr; return; } TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive); cut->setLoc(loc); cut->setType(TType(EbtVoid)); node = cut; } break; default: break; // most pass through unchanged } } // // Optionally decompose intrinsics to AST opcodes. // void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) { // Helper to find image data for image atomics: // OpImageLoad(image[idx]) // We take the image load apart and add its params to the atomic op aggregate node const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) { TIntermAggregate* loadOp = load->getAsAggregate(); if (loadOp == nullptr) { error(loc, "unknown image type in atomic operation", "", ""); node = nullptr; return; } atomic->getSequence().push_back(loadOp->getSequence()[0]); atomic->getSequence().push_back(loadOp->getSequence()[1]); }; // Return true if this is an imageLoad, which we will change to an image atomic. const auto isImageParam = [](TIntermTyped* image) -> bool { TIntermAggregate* imageAggregate = image->getAsAggregate(); return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad; }; const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* { TSymbol* symbol = symbolTable.find(name); if (nullptr == symbol) { type.getQualifier().builtIn = builtin; TVariable* variable = new TVariable(new TString(name), type); symbolTable.insert(*variable); symbol = symbolTable.find(name); assert(symbol && "Inserted symbol could not be found!"); } return intermediate.addSymbol(*(symbol->getAsVariable()), loc); }; // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST // opcodes for compatibility with existing software stacks. static const bool decomposeHlslIntrinsics = true; if (!decomposeHlslIntrinsics || !node || !node->getAsOperator()) return; const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; TIntermUnary* fnUnary = node->getAsUnaryNode(); const TOperator op = node->getAsOperator()->getOp(); switch (op) { case EOpGenMul: { // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul // Since we are treating HLSL rows like GLSL columns (the first matrix indirection), // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc. TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped(); if (arg0->isVector() && arg1->isVector()) { // vec * vec node->getAsAggregate()->setOperator(EOpDot); } else { node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1); } break; } case EOpRcp: { // rcp(a) -> 1 / a TIntermTyped* arg0 = fnUnary->getOperand(); TBasicType type0 = arg0->getBasicType(); TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true); node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0); break; } case EOpAny: // fall through case EOpAll: { TIntermTyped* typedArg = arguments->getAsTyped(); // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool. // We'll convert here. Note that for efficiency, we could add a smarter // decomposition for some type cases, e.g, maybe by decomposing a dot product. if (typedArg->getType().getBasicType() != EbtBool) { const TType boolType(EbtBool, EvqTemporary, typedArg->getVectorSize(), typedArg->getMatrixCols(), typedArg->getMatrixRows(), typedArg->isVector()); typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg); node->getAsUnaryNode()->setOperand(typedArg); } break; } case EOpSaturate: { // saturate(a) -> clamp(a,0,1) TIntermTyped* arg0 = fnUnary->getOperand(); TBasicType type0 = arg0->getBasicType(); TIntermAggregate* clamp = new TIntermAggregate(EOpClamp); clamp->getSequence().push_back(arg0); clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true)); clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true)); clamp->setLoc(loc); clamp->setType(node->getType()); clamp->getWritableType().getQualifier().makeTemporary(); node = clamp; break; } case EOpSinCos: { // sincos(a,b,c) -> b = sin(a), c = cos(a) TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0); TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0); TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc); TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc); TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc); compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign); compoundStatement->setOperator(EOpSequence); compoundStatement->setLoc(loc); compoundStatement->setType(TType(EbtVoid)); node = compoundStatement; break; } case EOpClip: { // clip(a) -> if (any(a<0)) discard; TIntermTyped* arg0 = fnUnary->getOperand(); TBasicType type0 = arg0->getBasicType(); TIntermTyped* compareNode = nullptr; // For non-scalars: per experiment with FXC compiler, discard if any component < 0. if (!arg0->isScalar()) { // component-wise compare: a < 0 TIntermAggregate* less = new TIntermAggregate(EOpLessThan); less->getSequence().push_back(arg0); less->setLoc(loc); // make vec or mat of bool matching dimensions of input less->setType(TType(EbtBool, EvqTemporary, arg0->getType().getVectorSize(), arg0->getType().getMatrixCols(), arg0->getType().getMatrixRows(), arg0->getType().isVector())); // calculate # of components for comparison const const int constComponentCount = std::max(arg0->getType().getVectorSize(), 1) * std::max(arg0->getType().getMatrixCols(), 1) * std::max(arg0->getType().getMatrixRows(), 1); TConstUnion zero; if (arg0->getType().isIntegerDomain()) zero.setDConst(0); else zero.setDConst(0.0); TConstUnionArray zeros(constComponentCount, zero); less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true)); compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool)); } else { TIntermTyped* zero; if (arg0->getType().isIntegerDomain()) zero = intermediate.addConstantUnion(0, loc, true); else zero = intermediate.addConstantUnion(0.0, type0, loc, true); compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero); } TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc); node = new TIntermSelection(compareNode, killNode, nullptr); node->setLoc(loc); break; } case EOpLog10: { // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10)) TIntermTyped* arg0 = fnUnary->getOperand(); TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0); TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true); node = handleBinaryMath(loc, "mul", EOpMul, log2, base); break; } case EOpDst: { // dest.x = 1; // dest.y = src0.y * src1.y; // dest.z = src0.z; // dest.w = src1.w; TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* y = intermediate.addConstantUnion(1, loc, true); TIntermTyped* z = intermediate.addConstantUnion(2, loc, true); TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc); TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc); TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc); TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y)); dst->getSequence().push_back(src0z); dst->getSequence().push_back(src1w); dst->setType(TType(EbtFloat, EvqTemporary, 4)); dst->setLoc(loc); node = dst; break; } case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value case EOpInterlockedMin: // ... case EOpInterlockedMax: // ... case EOpInterlockedAnd: // ... case EOpInterlockedOr: // ... case EOpInterlockedXor: // ... case EOpInterlockedExchange: // always has output arg { TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value TIntermTyped* arg2 = nullptr; if (argAggregate->getSequence().size() > 2) arg2 = argAggregate->getSequence()[2]->getAsTyped(); const bool isImage = isImageParam(arg0); const TOperator atomicOp = mapAtomicOp(loc, op, isImage); TIntermAggregate* atomic = new TIntermAggregate(atomicOp); atomic->setType(arg0->getType()); atomic->getWritableType().getQualifier().makeTemporary(); atomic->setLoc(loc); if (isImage) { // orig_value = imageAtomicOp(image, loc, data) imageAtomicParams(atomic, arg0); atomic->getSequence().push_back(arg1); if (argAggregate->getSequence().size() > 2) { node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); } else { node = atomic; // no assignment needed, as there was no out var. } } else { // Normal memory variable: // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value if (argAggregate->getSequence().size() > 2) { // optional output param is present. return value goes to arg2. atomic->getSequence().push_back(arg0); atomic->getSequence().push_back(arg1); node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); } else { // Set the matching operator. Since output is absent, this is all we need to do. node->getAsAggregate()->setOperator(atomicOp); node->setType(atomic->getType()); } } break; } case EOpInterlockedCompareExchange: { TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig const bool isImage = isImageParam(arg0); TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage)); atomic->setLoc(loc); atomic->setType(arg2->getType()); atomic->getWritableType().getQualifier().makeTemporary(); if (isImage) { imageAtomicParams(atomic, arg0); } else { atomic->getSequence().push_back(arg0); } atomic->getSequence().push_back(arg1); atomic->getSequence().push_back(arg2); node = intermediate.addAssign(EOpAssign, arg3, atomic, loc); break; } case EOpEvaluateAttributeSnapped: { // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y: // iU = (iU<<28)>>28 // fU = ((float)iU)/16 // Targets might handle this natively, in which case they can disable // decompositions. TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true); TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift, handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28), i28); TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true); TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul, intermediate.addConversion(EOpConstructFloat, TType(EbtFloat, EvqTemporary, 2), iU), recip16); TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset); interp->getSequence().push_back(arg0); interp->getSequence().push_back(floatOffset); interp->setLoc(loc); interp->setType(arg0->getType()); interp->getWritableType().getQualifier().makeTemporary(); node = interp; break; } case EOpLit: { TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped(); TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); // Ambient dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); // Diffuse: TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); TIntermAggregate* diffuse = new TIntermAggregate(EOpMax); diffuse->getSequence().push_back(n_dot_l); diffuse->getSequence().push_back(zero); diffuse->setLoc(loc); diffuse->setType(TType(EbtFloat)); dst->getSequence().push_back(diffuse); // Specular: TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin); min_ndot->getSequence().push_back(n_dot_l); min_ndot->getSequence().push_back(n_dot_h); min_ndot->setLoc(loc); min_ndot->setType(TType(EbtFloat)); TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero); TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc)); // One: dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); dst->setLoc(loc); dst->setType(TType(EbtFloat, EvqTemporary, 4)); node = dst; break; } case EOpAsDouble: { // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must // first construct a uint64. TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); if (arg0->getType().isVector()) { // TODO: ... error(loc, "double2 conversion not implemented", "asdouble", ""); break; } TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2); uint64->getSequence().push_back(arg0); uint64->getSequence().push_back(arg1); uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2 uint64->setLoc(loc); // bitcast uint2 to a double TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble); convert->getAsUnaryNode()->setOperand(uint64); convert->setLoc(loc); convert->setType(TType(EbtDouble, EvqTemporary)); node = convert; break; } case EOpF16tof32: { // input uvecN with low 16 bits of each component holding a float16. convert to float32. TIntermTyped* argValue = node->getAsUnaryNode()->getOperand(); TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true); const int vecSize = argValue->getType().getVectorSize(); TOperator constructOp = EOpNull; switch (vecSize) { case 1: constructOp = EOpNull; break; // direct use, no construct needed case 2: constructOp = EOpConstructVec2; break; case 3: constructOp = EOpConstructVec3; break; case 4: constructOp = EOpConstructVec4; break; default: assert(0); break; } // For scalar case, we don't need to construct another type. TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr; if (result) { result->setType(TType(EbtFloat, EvqTemporary, vecSize)); result->setLoc(loc); } for (int idx = 0; idx < vecSize; ++idx) { TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); TIntermTyped* component = argValue->getType().isVector() ? intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue; if (component != argValue) component->setType(TType(argValue->getBasicType(), EvqTemporary)); TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16); unpackOp->setType(TType(EbtFloat, EvqTemporary, 2)); unpackOp->getAsUnaryNode()->setOperand(component); unpackOp->setLoc(loc); TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc); if (result != nullptr) { result->getSequence().push_back(lowOrder); node = result; } else { node = lowOrder; } } break; } case EOpF32tof16: { // input floatN converted to 16 bit float in low order bits of each component of uintN TIntermTyped* argValue = node->getAsUnaryNode()->getOperand(); TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); const int vecSize = argValue->getType().getVectorSize(); TOperator constructOp = EOpNull; switch (vecSize) { case 1: constructOp = EOpNull; break; // direct use, no construct needed case 2: constructOp = EOpConstructUVec2; break; case 3: constructOp = EOpConstructUVec3; break; case 4: constructOp = EOpConstructUVec4; break; default: assert(0); break; } // For scalar case, we don't need to construct another type. TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr; if (result) { result->setType(TType(EbtUint, EvqTemporary, vecSize)); result->setLoc(loc); } for (int idx = 0; idx < vecSize; ++idx) { TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); TIntermTyped* component = argValue->getType().isVector() ? intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue; if (component != argValue) component->setType(TType(argValue->getBasicType(), EvqTemporary)); TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2); vec2ComponentAndZero->getSequence().push_back(component); vec2ComponentAndZero->getSequence().push_back(zero); vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2)); vec2ComponentAndZero->setLoc(loc); TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16); packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero); packOp->setLoc(loc); packOp->setType(TType(EbtUint, EvqTemporary)); if (result != nullptr) { result->getSequence().push_back(packOp); node = result; } else { node = packOp; } } break; } case EOpD3DCOLORtoUBYTE4: { // ivec4 ( x.zyxw * 255.001953 ); TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand(); TSwizzleSelectors<TVectorSelector> selectors; selectors.push_back(2); selectors.push_back(1); selectors.push_back(0); selectors.push_back(3); TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc); TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc); swizzled->setType(arg0->getType()); swizzled->getWritableType().getQualifier().makeTemporary(); TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true); TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled); rangeConverted->setType(arg0->getType()); rangeConverted->getWritableType().getQualifier().makeTemporary(); node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted); node->setLoc(loc); node->setType(TType(EbtInt, EvqTemporary, 4)); break; } case EOpIsFinite: { // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate // it to !isnan && !isinf TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand(); // We'll make a temporary in case the RHS is cmoplex TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType()); tempArg->getWritableType().getQualifier().makeTemporary(); TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*tempArg, loc), arg0, loc); TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc); const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(), arg0->getMatrixRows()); TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc)); isnan->setType(boolType); TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan); notnan->setType(boolType); TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc)); isinf->setType(boolType); TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf); notinf->setType(boolType); TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf); andNode->setType(boolType); compoundStatement = intermediate.growAggregate(compoundStatement, andNode); compoundStatement->setOperator(EOpSequence); compoundStatement->setLoc(loc); compoundStatement->setType(boolType); node = compoundStatement; break; } case EOpWaveGetLaneCount: { // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol // so that it inhabits the symbol table, but has a user-invalid name // in-case some source HLSL defined the symbol also). TType type(EbtUint, EvqVaryingIn); node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type); break; } case EOpWaveGetLaneIndex: { // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the // symbol so that it inhabits the symbol table, but has a // user-invalid name in-case some source HLSL defined the symbol // also). TType type(EbtUint, EvqVaryingIn); node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type); break; } case EOpWaveActiveCountBits: { // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin // uvec4 type. TType uvec4Type(EbtUint, EvqTemporary, 4); // Get the uvec4 return from subgroupBallot(). TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc, EOpSubgroupBallot, true, arguments, uvec4Type); // uint type. TType uintType(EbtUint, EvqTemporary); node = intermediate.addBuiltInFunctionCall(loc, EOpSubgroupBallotBitCount, true, res, uintType); break; } case EOpWavePrefixCountBits: { // Mapped to subgroupBallotInclusiveBitCount(subgroupBallot()) // builtin // uvec4 type. TType uvec4Type(EbtUint, EvqTemporary, 4); // Get the uvec4 return from subgroupBallot(). TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc, EOpSubgroupBallot, true, arguments, uvec4Type); // uint type. TType uintType(EbtUint, EvqTemporary); node = intermediate.addBuiltInFunctionCall(loc, EOpSubgroupBallotInclusiveBitCount, true, res, uintType); break; } default: break; // most pass through unchanged } } // // Handle seeing function call syntax in the grammar, which could be any of // - .length() method // - constructor // - a call to a built-in function mapped to an operator // - a call to a built-in function that will remain a function call (e.g., texturing) // - user function // - subroutine call (not implemented yet) // TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments) { TIntermTyped* result = nullptr; TOperator op = function->getBuiltInOp(); if (op != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid); // use this to get the type back if (! constructorError(loc, arguments, *function, op, type)) { // // It's a constructor, of type 'type'. // result = handleConstructor(loc, arguments, type); if (result == nullptr) { error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); return nullptr; } } } else { // // Find it in the symbol table. // const TFunction* fnCandidate = nullptr; bool builtIn = false; int thisDepth = 0; // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes, // and clamp the opposite arg. Since that's complex, we farm it off to a separate method. // It doesn't naturally fall out of processing an argument at a time in isolation. if (function->getName() == "mul") addGenMulArgumentConversion(loc, *function, arguments); TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr; // TODO: this needs improvement: there's no way at present to look up a signature in // the symbol table for an arbitrary type. This is a temporary hack until that ability exists. // It will have false positives, since it doesn't check arg counts or types. if (arguments) { // Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we // look for either case. TIntermTyped* arg0 = nullptr; if (aggregate && aggregate->getSequence().size() > 0) arg0 = aggregate->getSequence()[0]->getAsTyped(); else if (arguments->getAsSymbolNode()) arg0 = arguments->getAsSymbolNode(); if (arg0 != nullptr && isStructBufferType(arg0->getType())) { static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1; if (function->getName().length() > methodPrefixSize && isStructBufferMethod(function->getName().substr(methodPrefixSize))) { const TString mangle = function->getName() + "("; TSymbol* symbol = symbolTable.find(mangle, &builtIn); if (symbol) fnCandidate = symbol->getAsFunction(); } } } if (fnCandidate == nullptr) fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments); if (fnCandidate) { // This is a declared function that might map to // - a built-in operator, // - a built-in function not mapped to an operator, or // - a user function. // Error check for a function requiring specific extensions present. if (builtIn && fnCandidate->getNumExtensions()) requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str()); // turn an implicit member-function resolution into an explicit call TString callerName; if (thisDepth == 0) callerName = fnCandidate->getMangledName(); else { // get the explicit (full) name of the function callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth]; callerName += fnCandidate->getMangledName(); // insert the implicit calling argument pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments); } // Convert 'in' arguments, so that types match. // However, skip those that need expansion, that is covered next. if (arguments) addInputArgumentConversions(*fnCandidate, arguments); // Expand arguments. Some arguments must physically expand to a different set // than what the shader declared and passes. if (arguments && !builtIn) expandArguments(loc, *fnCandidate, arguments); // Expansion may have changed the form of arguments aggregate = arguments ? arguments->getAsAggregate() : nullptr; op = fnCandidate->getBuiltInOp(); if (builtIn && op != EOpNull) { // A function call mapped to a built-in operation. result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType()); if (result == nullptr) { error(arguments->getLoc(), " wrong operand type", "Internal Error", "built in unary operator function. Type: %s", static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str()); } else if (result->getAsOperator()) { builtInOpCheck(loc, *fnCandidate, *result->getAsOperator()); } } else { // This is a function call not mapped to built-in operator. // It could still be a built-in function, but only if PureOperatorBuiltins == false. result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); TIntermAggregate* call = result->getAsAggregate(); call->setName(callerName); // this is how we know whether the given function is a built-in function or a user-defined function // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also // if builtIn == true, it's definitely a built-in function with EOpNull if (! builtIn) { call->setUserDefined(); intermediate.addToCallGraph(infoSink, currentCaller, callerName); } } // for decompositions, since we want to operate on the function node, not the aggregate holding // output conversions. const TIntermTyped* fnNode = result; decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions // Create the qualifier list, carried in the AST for the call. // Because some arguments expand to multiple arguments, the qualifier list will // be longer than the formal parameter list. if (result == fnNode && result->getAsAggregate()) { TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); for (int i = 0; i < fnCandidate->getParamCount(); ++i) { TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; if (hasStructBuffCounter(*(*fnCandidate)[i].type)) { // add buffer and counter buffer argument qualifier qualifierList.push_back(qual); qualifierList.push_back(qual); } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage, true)) { // add structure member expansion for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb) qualifierList.push_back(qual); } else { // Normal 1:1 case qualifierList.push_back(qual); } } } // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. // Also, build the qualifier list for user function calls, which are always called with an aggregate. // We don't do this is if there has been a decomposition, which will have added its own conversions // for output parameters. if (result == fnNode && result->getAsAggregate()) result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator()); } } // generic error recovery // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to // reduce cascades if (result == nullptr) result = intermediate.addConstantUnion(0.0, EbtFloat, loc); return result; } // An initial argument list is difficult: it can be null, or a single node, // or an aggregate if more than one argument. Add one to the front, maintaining // this lack of uniformity. void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments) { if (arguments == nullptr) arguments = front; else if (arguments->getAsAggregate() != nullptr) arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front); else arguments = intermediate.growAggregate(front, arguments); } // // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a // situation not well suited to resolution in intrinsic selection, but we can do so here, since we // can look at both arguments insert explicit shape changes if required. // void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args) { TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr; if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) { // It really ought to have two arguments. error(loc, "expected: mul arguments", "", ""); return; } TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); if (arg0->isVector() && arg1->isVector()) { // For: // vec * vec: it's handled during intrinsic selection, so while we could do it here, // we can also ignore it, which is easier. } else if (arg0->isVector() && arg1->isMatrix()) { // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col. if (arg0->getVectorSize() < arg1->getMatrixCols()) { // vec is smaller, so truncate larger mat dimension const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, 0, arg0->getVectorSize(), arg1->getMatrixRows()); arg1 = addConstructor(loc, arg1, truncType); } else if (arg0->getVectorSize() > arg1->getMatrixCols()) { // vec is larger, so truncate vec to mat size const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, arg1->getMatrixCols()); arg0 = addConstructor(loc, arg0, truncType); } } else if (arg0->isMatrix() && arg1->isVector()) { // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col. if (arg1->getVectorSize() < arg0->getMatrixRows()) { // vec is smaller, so truncate larger mat dimension const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, 0, arg0->getMatrixCols(), arg1->getVectorSize()); arg0 = addConstructor(loc, arg0, truncType); } else if (arg1->getVectorSize() > arg0->getMatrixRows()) { // vec is larger, so truncate vec to mat size const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, arg0->getMatrixRows()); arg1 = addConstructor(loc, arg1, truncType); } } else if (arg0->isMatrix() && arg1->isMatrix()) { // mat * mat: we clamp the smaller inner dimension to match the other matrix size. // Remember, HLSL Mrc = GLSL/SPIRV Mcr. if (arg0->getMatrixRows() > arg1->getMatrixCols()) { const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, 0, arg0->getMatrixCols(), arg1->getMatrixCols()); arg0 = addConstructor(loc, arg0, truncType); } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) { const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, 0, arg0->getMatrixRows(), arg1->getMatrixRows()); arg1 = addConstructor(loc, arg1, truncType); } } else { // It's something with scalars: we'll just leave it alone. Function selection will handle it // downstream. } // Warn if we altered one of the arguments if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1]) warn(loc, "mul() matrix size mismatch", "", ""); // Put arguments back. (They might be unchanged, in which case this is harmless). argAggregate->getSequence()[0] = arg0; argAggregate->getSequence()[1] = arg1; call[0].type = &arg0->getWritableType(); call[1].type = &arg1->getWritableType(); } // // Add any needed implicit conversions for function-call arguments to input parameters. // void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments) { TIntermAggregate* aggregate = arguments->getAsAggregate(); // Replace a single argument with a single argument. const auto setArg = [&](int paramNum, TIntermTyped* arg) { if (function.getParamCount() == 1) arguments = arg; else { if (aggregate == nullptr) arguments = arg; else aggregate->getSequence()[paramNum] = arg; } }; // Process each argument's conversion for (int param = 0; param < function.getParamCount(); ++param) { if (! function[param].type->getQualifier().isParamInput()) continue; // At this early point there is a slight ambiguity between whether an aggregate 'arguments' // is the single argument itself or its children are the arguments. Only one argument // means take 'arguments' itself as the one argument. TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[param]->getAsTyped() : arguments->getAsTyped()); if (*function[param].type != arg->getType()) { // In-qualified arguments just need an extra node added above the argument to // convert to the correct type. TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg); if (convArg != nullptr) convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg); if (convArg != nullptr) setArg(param, convArg); else error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param); } else { if (wasFlattened(arg)) { // If both formal and calling arg are to be flattened, leave that to argument // expansion, not conversion. if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) { // Will make a two-level subtree. // The deepest will copy member-by-member to build the structure to pass. // The level above that will be a two-operand EOpComma sequence that follows the copy by the // object itself. TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type); internalAggregate->getWritableType().getQualifier().makeTemporary(); TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(), internalAggregate->getName(), internalAggregate->getType()); internalSymbolNode->setLoc(arg->getLoc()); // This makes the deepest level, the member-wise copy TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign, internalSymbolNode, arg)->getAsAggregate(); // Now, pair that with the resulting aggregate. assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc()); assignAgg->setOperator(EOpComma); assignAgg->setType(internalAggregate->getType()); setArg(param, assignAgg); } } } } } // // Add any needed implicit expansion of calling arguments from what the shader listed to what's // internally needed for the AST (given the constraints downstream). // void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments) { TIntermAggregate* aggregate = arguments->getAsAggregate(); int functionParamNumberOffset = 0; // Replace a single argument with a single argument. const auto setArg = [&](int paramNum, TIntermTyped* arg) { if (function.getParamCount() + functionParamNumberOffset == 1) arguments = arg; else { if (aggregate == nullptr) arguments = arg; else aggregate->getSequence()[paramNum] = arg; } }; // Replace a single argument with a list of arguments const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) { if (args.size() == 1) setArg(paramNum, args.front()); else if (args.size() > 1) { if (function.getParamCount() + functionParamNumberOffset == 1) { arguments = intermediate.makeAggregate(args.front()); std::for_each(args.begin() + 1, args.end(), [&](TIntermTyped* arg) { arguments = intermediate.growAggregate(arguments, arg); }); } else { auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum); aggregate->getSequence().insert(it, args.begin(), args.end()); } functionParamNumberOffset += (int)(args.size() - 1); } }; // Process each argument's conversion for (int param = 0; param < function.getParamCount(); ++param) { // At this early point there is a slight ambiguity between whether an aggregate 'arguments' // is the single argument itself or its children are the arguments. Only one argument // means take 'arguments' itself as the one argument. TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() : arguments->getAsTyped()); if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) { // Need to pass the structure members instead of the structure. TVector<TIntermTyped*> memberArgs; for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb) memberArgs.push_back(flattenAccess(arg, memb)); setArgList(param + functionParamNumberOffset, memberArgs); } } // TODO: if we need both hidden counter args (below) and struct expansion (above) // the two algorithms need to be merged: Each assumes the list starts out 1:1 between // parameters and arguments. // If any argument is a pass-by-reference struct buffer with an associated counter // buffer, we have to add another hidden parameter for that counter. if (aggregate) addStructBuffArguments(loc, aggregate); } // // Add any needed implicit output conversions for function-call arguments. This // can require a new tree topology, complicated further by whether the function // has a return value. // // Returns a node of a subtree that evaluates to the return value of the function. // TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode) { assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr); const TSourceLoc& loc = intermNode.getLoc(); TIntermSequence argSequence; // temp sequence for unary node args if (intermNode.getAsUnaryNode()) argSequence.push_back(intermNode.getAsUnaryNode()->getOperand()); TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence; const auto needsConversion = [&](int argNum) { return function[argNum].type->getQualifier().isParamOutput() && (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() || shouldConvertLValue(arguments[argNum]) || wasFlattened(arguments[argNum]->getAsTyped())); }; // Will there be any output conversions? bool outputConversions = false; for (int i = 0; i < function.getParamCount(); ++i) { if (needsConversion(i)) { outputConversions = true; break; } } if (! outputConversions) return &intermNode; // Setup for the new tree, if needed: // // Output conversions need a different tree topology. // Out-qualified arguments need a temporary of the correct type, with the call // followed by an assignment of the temporary to the original argument: // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. TIntermTyped* conversionTree = nullptr; TVariable* tempRet = nullptr; if (intermNode.getBasicType() != EbtVoid) { // do the "tempRet = function(...), " bit from above tempRet = makeInternalVariable("tempReturn", intermNode.getType()); TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc); } else conversionTree = &intermNode; conversionTree = intermediate.makeAggregate(conversionTree); // Process each argument's conversion for (int i = 0; i < function.getParamCount(); ++i) { if (needsConversion(i)) { // Out-qualified arguments needing conversion need to use the topology setup above. // Do the " ...(tempArg, ...), arg = tempArg" bit from above. // Make a temporary for what the function expects the argument to look like. TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type); tempArg->getWritableType().getQualifier().makeTemporary(); TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc); // This makes the deepest level, the member-wise copy TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), tempArgNode); tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign); conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); // replace the argument with another node for the same tempArg variable arguments[i] = intermediate.addSymbol(*tempArg, loc); } } // Finalize the tree topology (see bigger comment above). if (tempRet) { // do the "..., tempRet" bit from above TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc); } conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc); return conversionTree; } // // Add any needed "hidden" counter buffer arguments for function calls. // // Modifies the 'aggregate' argument if needed. Otherwise, is no-op. // void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate) { // See if there are any SB types with counters. const bool hasStructBuffArg = std::any_of(aggregate->getSequence().begin(), aggregate->getSequence().end(), [this](const TIntermNode* node) { return (node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType()); }); // Nothing to do, if we didn't find one. if (! hasStructBuffArg) return; TIntermSequence argsWithCounterBuffers; for (int param = 0; param < int(aggregate->getSequence().size()); ++param) { argsWithCounterBuffers.push_back(aggregate->getSequence()[param]); if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) { const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode(); if (blockSym != nullptr) { TType counterType; counterBufferType(loc, counterType); const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName())); TVariable* variable = makeInternalVariable(counterBlockName, counterType); // Mark this buffer's counter block as being in use structBufferCounter[counterBlockName] = true; TIntermSymbol* sym = intermediate.addSymbol(*variable, loc); argsWithCounterBuffers.push_back(sym); } } } // Swap with the temp list we've built up. aggregate->getSequence().swap(argsWithCounterBuffers); } // // Do additional checking of built-in function calls that is not caught // by normal semantic checks on argument type, extension tagging, etc. // // Assumes there has been a semantically correct match to a built-in function prototype. // void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) { // Set up convenience accessors to the argument(s). There is almost always // multiple arguments for the cases below, but when there might be one, // check the unaryArg first. const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference const TIntermTyped* unaryArg = nullptr; const TIntermTyped* arg0 = nullptr; if (callNode.getAsAggregate()) { argp = &callNode.getAsAggregate()->getSequence(); if (argp->size() > 0) arg0 = (*argp)[0]->getAsTyped(); } else { assert(callNode.getAsUnaryNode()); unaryArg = callNode.getAsUnaryNode()->getOperand(); arg0 = unaryArg; } const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr switch (callNode.getOp()) { case EOpTextureGather: case EOpTextureGatherOffset: case EOpTextureGatherOffsets: { // Figure out which variants are allowed by what extensions, // and what arguments must be constant for which situations. TString featureString = fnCandidate.getName() + "(...)"; const char* feature = featureString.c_str(); int compArg = -1; // track which argument, if any, is the constant component argument switch (callNode.getOp()) { case EOpTextureGather: // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, // otherwise, need GL_ARB_texture_gather. if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { if (! fnCandidate[0].type->getSampler().shadow) compArg = 2; } break; case EOpTextureGatherOffset: // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; break; case EOpTextureGatherOffsets: if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; break; default: break; } if (compArg > 0 && compArg < fnCandidate.getParamCount()) { if (aggArgs[compArg]->getAsConstantUnion()) { int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); if (value < 0 || value > 3) error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); } else error(loc, "must be a compile-time constant:", feature, "component argument"); } break; } case EOpTextureOffset: case EOpTextureFetchOffset: case EOpTextureProjOffset: case EOpTextureLodOffset: case EOpTextureProjLodOffset: case EOpTextureGradOffset: case EOpTextureProjGradOffset: { // Handle texture-offset limits checking // Pick which argument has to hold constant offsets int arg = -1; switch (callNode.getOp()) { case EOpTextureOffset: arg = 2; break; case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break; case EOpTextureProjOffset: arg = 2; break; case EOpTextureLodOffset: arg = 3; break; case EOpTextureProjLodOffset: arg = 3; break; case EOpTextureGradOffset: arg = 4; break; case EOpTextureProjGradOffset: arg = 4; break; default: assert(0); break; } if (arg > 0) { if (aggArgs[arg]->getAsConstantUnion() == nullptr) error(loc, "argument must be compile-time constant", "texel offset", ""); else { const TType& type = aggArgs[arg]->getAsTyped()->getType(); for (int c = 0; c < type.getVectorSize(); ++c) { int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); } } } break; } case EOpTextureQuerySamples: case EOpImageQuerySamples: break; case EOpImageAtomicAdd: case EOpImageAtomicMin: case EOpImageAtomicMax: case EOpImageAtomicAnd: case EOpImageAtomicOr: case EOpImageAtomicXor: case EOpImageAtomicExchange: case EOpImageAtomicCompSwap: break; case EOpInterpolateAtCentroid: case EOpInterpolateAtSample: case EOpInterpolateAtOffset: // Make sure the first argument is an interpolant, or an array element of an interpolant if (arg0->getType().getQualifier().storage != EvqVaryingIn) { // It might still be an array element. // // We could check more, but the semantics of the first argument are already met; the // only way to turn an array into a float/vec* is array dereference and swizzle. // // ES and desktop 4.3 and earlier: swizzles may not be used // desktop 4.4 and later: swizzles may be used const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true); if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), ""); } break; default: break; } } // // Handle seeing something in a grammar production that can be done by calling // a constructor. // // The constructor still must be "handled" by handleFunctionCall(), which will // then call handleConstructor(). // TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type) { TOperator op = intermediate.mapTypeToConstructorOp(type); if (op == EOpNull) { error(loc, "cannot construct this type", type.getBasicString(), ""); return nullptr; } TString empty(""); return new TFunction(&empty, type, op); } // // Handle seeing a "COLON semantic" at the end of a type declaration, // by updating the type according to the semantic. // void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn, const TString& upperCase) { // Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed // semantic number is >= limit, errorMsg is issued and 0 is returned. // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet // accept those in lambda functions. const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int { size_t pos = semantic.find_last_not_of("0123456789"); if (pos == std::string::npos) return 0u; unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1); if (limit != 0 && semanticNum >= limit) { error(loc, errorMsg, semantic.c_str(), ""); return 0u; } return semanticNum; }; switch(builtIn) { case EbvNone: // Get location numbers from fragment outputs, instead of // auto-assigning them. if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) { qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr); nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u); } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) { builtIn = EbvClipDistance; qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic"); } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) { builtIn = EbvCullDistance; qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic"); } break; case EbvPosition: // adjust for stage in/out if (language == EShLangFragment) builtIn = EbvFragCoord; break; case EbvFragStencilRef: error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", ""); break; case EbvTessLevelInner: case EbvTessLevelOuter: qualifier.patch = true; break; default: break; } if (qualifier.builtIn == EbvNone) qualifier.builtIn = builtIn; qualifier.semanticName = intermediate.addSemanticName(upperCase); } // // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN" // // 'location' has the "c[Subcomponent]" part. // 'component' points to the "component" part, or nullptr if not present. // void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location, const glslang::TString* component) { if (location.size() == 0 || location[0] != 'c') { error(loc, "expected 'c'", "packoffset", ""); return; } if (location.size() == 1) return; if (! isdigit(location[1])) { error(loc, "expected number after 'c'", "packoffset", ""); return; } qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str()); if (component != nullptr) { int componentOffset = 0; switch ((*component)[0]) { case 'x': componentOffset = 0; break; case 'y': componentOffset = 4; break; case 'z': componentOffset = 8; break; case 'w': componentOffset = 12; break; default: componentOffset = -1; break; } if (componentOffset < 0 || component->size() > 1) { error(loc, "expected {x, y, z, w} for component", "packoffset", ""); return; } qualifier.layoutOffset += componentOffset; } } // // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN" // // 'profile' points to the shader_profile part, or nullptr if not present. // 'desc' is the type# part. // void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile, const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc) { if (profile != nullptr) warn(loc, "ignoring shader_profile", "register", ""); if (desc.size() < 1) { error(loc, "expected register type", "register", ""); return; } int regNumber = 0; if (desc.size() > 1) { if (isdigit(desc[1])) regNumber = atoi(desc.substr(1, desc.size()).c_str()); else { error(loc, "expected register number after register type", "register", ""); return; } } // TODO: learn what all these really mean and how they interact with regNumber and subComponent const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding(); switch (std::tolower(desc[0])) { case 'b': case 't': case 'c': case 's': case 'u': // if nothing else has set the binding, do so now // (other mechanisms override this one) if (!qualifier.hasBinding()) qualifier.layoutBinding = regNumber + subComponent; // This handles per-register layout sets numbers. For the global mode which sets // every symbol to the same value, see setLinkageLayoutSets(). if ((resourceInfo.size() % 3) == 0) { // Apply per-symbol resource set and binding. for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) { if (strcmp(desc.c_str(), it[0].c_str()) == 0) { qualifier.layoutSet = atoi(it[1].c_str()); qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent; break; } } } break; default: warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]); break; } // space unsigned int setNumber; const auto crackSpace = [&]() -> bool { const int spaceLen = 5; if (spaceDesc->size() < spaceLen + 1) return false; if (spaceDesc->compare(0, spaceLen, "space") != 0) return false; if (! isdigit((*spaceDesc)[spaceLen])) return false; setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str()); return true; }; // if nothing else has set the set, do so now // (other mechanisms override this one) if (spaceDesc && !qualifier.hasSet()) { if (! crackSpace()) { error(loc, "expected spaceN", "register", ""); return; } qualifier.layoutSet = setNumber; } } // Convert to a scalar boolean, or if not allowed by HLSL semantics, // report an error and return nullptr. TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition, bool mustBeScalar) { if (mustBeScalar && !condition->getType().isScalarOrVec1()) { error(loc, "requires a scalar", "conditional expression", ""); return nullptr; } return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()), condition); } // // Same error message for all places assignments don't work. // void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) { error(loc, "", op, "cannot convert from '%s' to '%s'", right.c_str(), left.c_str()); } // // Same error message for all places unary operations don't work. // void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) { error(loc, " wrong operand type", op, "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", op, operand.c_str()); } // // Same error message for all binary operations don't work. // void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) { error(loc, " wrong operand types:", op, "no operation '%s' exists that takes a left-hand operand of type '%s' and " "a right operand of type '%s' (or there is no acceptable conversion)", op, left.c_str(), right.c_str()); } // // A basic type of EbtVoid is a key that the name string was seen in the source, but // it was not found as a variable in the symbol table. If so, give the error // message and insert a dummy variable in the symbol table to prevent future errors. // void HlslParseContext::variableCheck(TIntermTyped*& nodePtr) { TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); if (! symbol) return; if (symbol->getType().getBasicType() == EbtVoid) { error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), ""); // Add to symbol table to prevent future error messages on the same name if (symbol->getName().size() > 0) { TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); symbolTable.insert(*fakeVariable); // substitute a symbol node for this new variable nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); } } } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token) { if (node->getQualifier().storage != EvqConst) error(node->getLoc(), "constant expression required", token, ""); } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token) { if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) return; error(node->getLoc(), "scalar integer expression required", token, ""); } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token) { if (! symbolTable.atGlobalLevel()) error(loc, "not allowed in nested scope", token, ""); } bool HlslParseContext::builtInName(const TString& /*identifier*/) { return false; } // // Make sure there is enough data and not too many arguments provided to the // constructor to build something of the type of the constructor. Also returns // the type of the constructor. // // Returns true if there was an error in construction. // bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type) { type.shallowCopy(function.getType()); bool constructingMatrix = false; switch (op) { case EOpConstructTextureSampler: return constructorTextureSamplerError(loc, function); case EOpConstructMat2x2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3x3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4x4: case EOpConstructDMat2x2: case EOpConstructDMat2x3: case EOpConstructDMat2x4: case EOpConstructDMat3x2: case EOpConstructDMat3x3: case EOpConstructDMat3x4: case EOpConstructDMat4x2: case EOpConstructDMat4x3: case EOpConstructDMat4x4: case EOpConstructIMat2x2: case EOpConstructIMat2x3: case EOpConstructIMat2x4: case EOpConstructIMat3x2: case EOpConstructIMat3x3: case EOpConstructIMat3x4: case EOpConstructIMat4x2: case EOpConstructIMat4x3: case EOpConstructIMat4x4: case EOpConstructUMat2x2: case EOpConstructUMat2x3: case EOpConstructUMat2x4: case EOpConstructUMat3x2: case EOpConstructUMat3x3: case EOpConstructUMat3x4: case EOpConstructUMat4x2: case EOpConstructUMat4x3: case EOpConstructUMat4x4: case EOpConstructBMat2x2: case EOpConstructBMat2x3: case EOpConstructBMat2x4: case EOpConstructBMat3x2: case EOpConstructBMat3x3: case EOpConstructBMat3x4: case EOpConstructBMat4x2: case EOpConstructBMat4x3: case EOpConstructBMat4x4: constructingMatrix = true; break; default: break; } // // Walk the arguments for first-pass checks and collection of information. // int size = 0; bool constType = true; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (int arg = 0; arg < function.getParamCount(); ++arg) { if (function[arg].type->isArray()) { if (function[arg].type->isUnsizedArray()) { // Can't construct from an unsized array. error(loc, "array argument must be sized", "constructor", ""); return true; } arrayArg = true; } if (constructingMatrix && function[arg].type->isMatrix()) matrixInMatrix = true; // 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument. if (full) { // For vectors and matrices, it's okay to have too many components // available, but not okay to have unused arguments. overFull = true; } size += function[arg].type->computeNumComponents(); if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) full = true; if (function[arg].type->getQualifier().storage != EvqConst) constType = false; } if (constType) type.getQualifier().storage = EvqConst; if (type.isArray()) { if (function.getParamCount() == 0) { error(loc, "array constructor must have at least one argument", "constructor", ""); return true; } if (type.isUnsizedArray()) { // auto adapt the constructor type to the number of arguments type.changeOuterArraySize(function.getParamCount()); } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) { error(loc, "array constructor needs one argument per array element", "constructor", ""); return true; } if (type.isArrayOfArrays()) { // Types have to match, but we're still making the type. // Finish making the type, and the comparison is done later // when checking for conversion. TArraySizes& arraySizes = *type.getArraySizes(); // At least the dimensionalities have to match. if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) { error(loc, "array constructor argument not correct type to construct array element", "constructor", ""); return true; } if (arraySizes.isInnerUnsized()) { // "Arrays of arrays ..., and the size for any dimension is optional" // That means we need to adopt (from the first argument) the other array sizes into the type. for (int d = 1; d < arraySizes.getNumDims(); ++d) { if (arraySizes.getDimSize(d) == UnsizedArraySize) { arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1)); } } } } } // Some array -> array type casts are okay if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() && !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() && type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1) return false; if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { error(loc, "constructing non-array constituent from array argument", "constructor", ""); return true; } if (matrixInMatrix && ! type.isArray()) { return false; } if (overFull) { error(loc, "too many arguments", "constructor", ""); return true; } if (op == EOpConstructStruct && ! type.isArray()) { if (isScalarConstructor(node)) return false; // Self-type construction: e.g, we can construct a struct from a single identically typed object. if (function.getParamCount() == 1 && type == *function[0].type) return false; if ((int)type.getStruct()->size() != function.getParamCount()) { error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); return true; } } if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || (op == EOpConstructStruct && size < type.computeNumComponents())) { error(loc, "not enough data provided for construction", "constructor", ""); return true; } return false; } // See if 'node', in the context of constructing aggregates, is a scalar argument // to a constructor. // bool HlslParseContext::isScalarConstructor(const TIntermNode* node) { // Obviously, it must be a scalar, but an aggregate node might not be fully // completed yet: holding a sequence of initializers under an aggregate // would not yet be typed, so don't check it's type. This corresponds to // the aggregate operator also not being set yet. (An aggregate operation // that legitimately yields a scalar will have a getOp() of that operator, // not EOpNull.) return node->getAsTyped() != nullptr && node->getAsTyped()->isScalar() && (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull); } // Verify all the correct semantics for constructing a combined texture/sampler. // Return true if the semantics are incorrect. bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function) { TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change const char* token = constructorName.c_str(); // exactly two arguments needed if (function.getParamCount() != 2) { error(loc, "sampler-constructor requires two arguments", token, ""); return true; } // For now, not allowing arrayed constructors, the rest of this function // is set up to allow them, if this test is removed: if (function.getType().isArray()) { error(loc, "sampler-constructor cannot make an array of samplers", token, ""); return true; } // first argument // * the constructor's first argument must be a texture type // * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array) // of the texture type must match that of the constructed sampler type // (that is, the suffixes of the type of the first argument and the // type of the constructor will be spelled the same way) if (function[0].type->getBasicType() != EbtSampler || ! function[0].type->getSampler().isTexture() || function[0].type->isArray()) { error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, ""); return true; } // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=() TSampler texture = function.getType().getSampler(); texture.combined = false; texture.shadow = false; if (texture != function[0].type->getSampler()) { error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, ""); return true; } // second argument // * the constructor's second argument must be a scalar of type // *sampler* or *samplerShadow* // * the presence or absence of depth comparison (Shadow) must match // between the constructed sampler type and the type of the second argument if (function[1].type->getBasicType() != EbtSampler || ! function[1].type->getSampler().isPureSampler() || function[1].type->isArray()) { error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, ""); return true; } if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) { error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, ""); return true; } return false; } // Checks to see if a void variable has been declared and raise an error message for such a case // // returns true in case of an error // bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) { if (basicType == EbtVoid) { error(loc, "illegal use of type 'void'", identifier.c_str(), ""); return true; } return false; } // // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. // void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier) { // move from parameter/unknown qualifiers to pipeline in/out qualifiers switch (qualifier.storage) { case EvqIn: qualifier.storage = EvqVaryingIn; break; case EvqOut: qualifier.storage = EvqVaryingOut; break; default: break; } } // // Merge characteristics of the 'src' qualifier into the 'dst'. // If there is duplication, issue error messages, unless 'force' // is specified, which means to just override default settings. // // Also, when force is false, it will be assumed that 'src' follows // 'dst', for the purpose of error checking order for versions // that require specific orderings of qualifiers. // void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src) { // Storage qualification if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) dst.storage = src.storage; else if ((dst.storage == EvqIn && src.storage == EvqOut) || (dst.storage == EvqOut && src.storage == EvqIn)) dst.storage = EvqInOut; else if ((dst.storage == EvqIn && src.storage == EvqConst) || (dst.storage == EvqConst && src.storage == EvqIn)) dst.storage = EvqConstReadOnly; // Layout qualifiers mergeObjectLayoutQualifiers(dst, src, false); // individual qualifiers bool repeated = false; #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field; MERGE_SINGLETON(invariant); MERGE_SINGLETON(noContraction); MERGE_SINGLETON(centroid); MERGE_SINGLETON(smooth); MERGE_SINGLETON(flat); MERGE_SINGLETON(nopersp); MERGE_SINGLETON(patch); MERGE_SINGLETON(sample); MERGE_SINGLETON(coherent); MERGE_SINGLETON(volatil); MERGE_SINGLETON(restrict); MERGE_SINGLETON(readonly); MERGE_SINGLETON(writeonly); MERGE_SINGLETON(specConstant); MERGE_SINGLETON(nonUniform); } // used to flatten the sampler type space into a single dimension // correlates with the declaration of defaultSamplerPrecision[] int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler) { int arrayIndex = sampler.arrayed ? 1 : 0; int shadowIndex = sampler.shadow ? 1 : 0; int externalIndex = sampler.external ? 1 : 0; return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim; } // // Do size checking for an array type's size. // void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair) { bool isConst = false; sizePair.size = 1; sizePair.node = nullptr; TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (constant) { // handle true (non-specialization) constant sizePair.size = constant->getConstArray()[0].getIConst(); isConst = true; } else { // see if it's a specialization constant instead if (expr->getQualifier().isSpecConstant()) { isConst = true; sizePair.node = expr; TIntermSymbol* symbol = expr->getAsSymbolNode(); if (symbol && symbol->getConstArray().size() > 0) sizePair.size = symbol->getConstArray()[0].getIConst(); } } if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { error(loc, "array size must be a constant integer expression", "", ""); return; } if (sizePair.size <= 0) { error(loc, "array size must be a positive integer", "", ""); return; } } // // Require array to be completely sized // void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) { if (arraySizes.hasUnsized()) error(loc, "array size required", "", ""); } void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) { const TTypeList& structure = *type.getStruct(); for (int m = 0; m < (int)structure.size(); ++m) { const TType& member = *structure[m].type; if (member.isArray()) arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); } } // // Do all the semantic checking for declaring or redeclaring an array, with and // without a size, and make the right changes to the symbol table. // void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type, TSymbol*& symbol, bool track) { if (symbol == nullptr) { bool currentScope; symbol = symbolTable.find(identifier, nullptr, ¤tScope); if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { // bad shader (errors already reported) trying to redeclare a built-in name as an array return; } if (symbol == nullptr || ! currentScope) { // // Successfully process a new definition. // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) // symbol = new TVariable(&identifier, type); symbolTable.insert(*symbol); if (track && symbolTable.atGlobalLevel()) trackLinkage(*symbol); return; } if (symbol->getAsAnonMember()) { error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); symbol = nullptr; return; } } // // Process a redeclaration. // if (symbol == nullptr) { error(loc, "array variable name expected", identifier.c_str(), ""); return; } // redeclareBuiltinVariable() should have already done the copyUp() TType& existingType = symbol->getWritableType(); if (existingType.isSizedArray()) { // be more lenient for input arrays to geometry shaders and tessellation control outputs, // where the redeclaration is the same size return; } existingType.updateArraySizes(type); } // // Enforce non-initializer type/qualifier rules. // void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type, TIntermTyped*& initializer) { // // Make the qualifier make sense, given that there is an initializer. // if (initializer == nullptr) { if (type.getQualifier().storage == EvqConst || type.getQualifier().storage == EvqConstReadOnly) { initializer = intermediate.makeAggregate(loc); warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), ""); } } } // // See if the identifier is a built-in symbol that can be redeclared, and if so, // copy the symbol table's read-only built-in variable to the current // global level, where it can be modified based on the passed in type. // // Returns nullptr if no redeclaration took place; meaning a normal declaration still // needs to occur for it, not necessarily an error. // // Returns a redeclared and type-modified variable if a redeclared occurred. // TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier, const TQualifier& /*qualifier*/, const TShaderQualifiers& /*publicType*/) { if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) return nullptr; return nullptr; } // // Generate index to the array element in a structure buffer (SSBO) // TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const { // Bail out if not a struct buffer if (buffer == nullptr || ! isStructBufferType(buffer->getType())) return nullptr; // Runtime sized array is always the last element. const TTypeList* bufferStruct = buffer->getType().getStruct(); TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc); TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc); argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type); return argArray; } // // IFF type is a structuredbuffer/byteaddressbuffer type, return the content // (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr. // TType* HlslParseContext::getStructBufferContentType(const TType& type) const { if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer) return nullptr; const int memberCount = (int)type.getStruct()->size(); assert(memberCount > 0); TType* contentType = (*type.getStruct())[memberCount-1].type; return contentType->isUnsizedArray() ? contentType : nullptr; } // // If an existing struct buffer has a sharable type, then share it. // void HlslParseContext::shareStructBufferType(TType& type) { // PackOffset must be equivalent to share types on a per-member basis. // Note: cannot use auto type due to recursion. Thus, this is a std::function. const std::function<bool(TType& lhs, TType& rhs)> compareQualifiers = [&](TType& lhs, TType& rhs) -> bool { if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset) return false; if (lhs.isStruct() != rhs.isStruct()) return false; if (lhs.isStruct() && rhs.isStruct()) { if (lhs.getStruct()->size() != rhs.getStruct()->size()) return false; for (int i = 0; i < int(lhs.getStruct()->size()); ++i) if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type)) return false; } return true; }; // We need to compare certain qualifiers in addition to the type. const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool { if (lhs.getQualifier().readonly != rhs.getQualifier().readonly) return false; // If both are structures, recursively look for packOffset equality // as well as type equality. return compareQualifiers(lhs, rhs) && lhs == rhs; }; // This is an exhaustive O(N) search, but real world shaders have // only a small number of these. for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) { // If the deep structure matches, modulo qualifiers, use it if (typeEqual(*structBufferTypes[idx], type)) { type.shallowCopy(*structBufferTypes[idx]); return; } } // Otherwise, remember it: TType* typeCopy = new TType; typeCopy->shallowCopy(type); structBufferTypes.push_back(typeCopy); } void HlslParseContext::paramFix(TType& type) { switch (type.getQualifier().storage) { case EvqConst: type.getQualifier().storage = EvqConstReadOnly; break; case EvqGlobal: case EvqUniform: case EvqTemporary: type.getQualifier().storage = EvqIn; break; case EvqBuffer: { // SSBO parameter. These do not go through the declareBlock path since they are fn parameters. correctUniform(type.getQualifier()); TQualifier bufferQualifier = globalBufferDefaults; mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true); bufferQualifier.storage = type.getQualifier().storage; bufferQualifier.readonly = type.getQualifier().readonly; bufferQualifier.coherent = type.getQualifier().coherent; bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn; type.getQualifier() = bufferQualifier; break; } default: break; } } void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) { if (type.containsSpecializationSize()) error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); } // // Layout qualifier stuff. // // Put the id's layout qualification into the public type, for qualifiers not having a number set. // This is before we know any type information for error checking. void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id) { std::transform(id.begin(), id.end(), id.begin(), ::tolower); if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { qualifier.layoutMatrix = ElmRowMajor; return; } if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { qualifier.layoutMatrix = ElmColumnMajor; return; } if (id == "push_constant") { requireVulkan(loc, "push_constant"); qualifier.layoutPushConstant = true; return; } if (language == EShLangGeometry || language == EShLangTessEvaluation) { if (id == TQualifier::getGeometryString(ElgTriangles)) { // publicType.shaderQualifiers.geometry = ElgTriangles; warn(loc, "ignored", id.c_str(), ""); return; } if (language == EShLangGeometry) { if (id == TQualifier::getGeometryString(ElgPoints)) { // publicType.shaderQualifiers.geometry = ElgPoints; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgLineStrip)) { // publicType.shaderQualifiers.geometry = ElgLineStrip; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgLines)) { // publicType.shaderQualifiers.geometry = ElgLines; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { // publicType.shaderQualifiers.geometry = ElgLinesAdjacency; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { // publicType.shaderQualifiers.geometry = ElgTriangleStrip; warn(loc, "ignored", id.c_str(), ""); return; } } else { assert(language == EShLangTessEvaluation); // input primitive if (id == TQualifier::getGeometryString(ElgTriangles)) { // publicType.shaderQualifiers.geometry = ElgTriangles; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgQuads)) { // publicType.shaderQualifiers.geometry = ElgQuads; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getGeometryString(ElgIsolines)) { // publicType.shaderQualifiers.geometry = ElgIsolines; warn(loc, "ignored", id.c_str(), ""); return; } // vertex spacing if (id == TQualifier::getVertexSpacingString(EvsEqual)) { // publicType.shaderQualifiers.spacing = EvsEqual; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { // publicType.shaderQualifiers.spacing = EvsFractionalEven; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { // publicType.shaderQualifiers.spacing = EvsFractionalOdd; warn(loc, "ignored", id.c_str(), ""); return; } // triangle order if (id == TQualifier::getVertexOrderString(EvoCw)) { // publicType.shaderQualifiers.order = EvoCw; warn(loc, "ignored", id.c_str(), ""); return; } if (id == TQualifier::getVertexOrderString(EvoCcw)) { // publicType.shaderQualifiers.order = EvoCcw; warn(loc, "ignored", id.c_str(), ""); return; } // point mode if (id == "point_mode") { // publicType.shaderQualifiers.pointMode = true; warn(loc, "ignored", id.c_str(), ""); return; } } } if (language == EShLangFragment) { if (id == "origin_upper_left") { // publicType.shaderQualifiers.originUpperLeft = true; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "pixel_center_integer") { // publicType.shaderQualifiers.pixelCenterInteger = true; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "early_fragment_tests") { // publicType.shaderQualifiers.earlyFragmentTests = true; warn(loc, "ignored", id.c_str(), ""); return; } for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) { if (id == TQualifier::getLayoutDepthString(depth)) { // publicType.shaderQualifiers.layoutDepth = depth; warn(loc, "ignored", id.c_str(), ""); return; } } if (id.compare(0, 13, "blend_support") == 0) { bool found = false; for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { if (id == TQualifier::getBlendEquationString(be)) { requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation"); intermediate.addBlendEquation(be); // publicType.shaderQualifiers.blendEquation = true; warn(loc, "ignored", id.c_str(), ""); found = true; break; } } if (! found) error(loc, "unknown blend equation", "blend_support", ""); return; } } error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); } // Put the id's layout qualifier value into the public type, for qualifiers having a number set. // This is before we know any type information for error checking. void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id, const TIntermTyped* node) { const char* feature = "layout-id value"; // const char* nonLiteralFeature = "non-literal layout-id value"; integerCheck(node, feature); const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); int value = 0; if (constUnion) { value = constUnion->getConstArray()[0].getIConst(); } std::transform(id.begin(), id.end(), id.begin(), ::tolower); if (id == "offset") { qualifier.layoutOffset = value; return; } else if (id == "align") { // "The specified alignment must be a power of 2, or a compile-time error results." if (! IsPow2(value)) error(loc, "must be a power of 2", "align", ""); else qualifier.layoutAlign = value; return; } else if (id == "location") { if ((unsigned int)value >= TQualifier::layoutLocationEnd) error(loc, "location is too large", id.c_str(), ""); else qualifier.layoutLocation = value; return; } else if (id == "set") { if ((unsigned int)value >= TQualifier::layoutSetEnd) error(loc, "set is too large", id.c_str(), ""); else qualifier.layoutSet = value; return; } else if (id == "binding") { if ((unsigned int)value >= TQualifier::layoutBindingEnd) error(loc, "binding is too large", id.c_str(), ""); else qualifier.layoutBinding = value; return; } else if (id == "component") { if ((unsigned)value >= TQualifier::layoutComponentEnd) error(loc, "component is too large", id.c_str(), ""); else qualifier.layoutComponent = value; return; } else if (id.compare(0, 4, "xfb_") == 0) { // "Any shader making any static use (after preprocessing) of any of these // *xfb_* qualifiers will cause the shader to be in a transform feedback // capturing mode and hence responsible for describing the transform feedback // setup." intermediate.setXfbMode(); if (id == "xfb_buffer") { // "It is a compile-time error to specify an *xfb_buffer* that is greater than // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." if (value >= resources.maxTransformFeedbackBuffers) error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers); if (value >= (int)TQualifier::layoutXfbBufferEnd) error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1); else qualifier.layoutXfbBuffer = value; return; } else if (id == "xfb_offset") { if (value >= (int)TQualifier::layoutXfbOffsetEnd) error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1); else qualifier.layoutXfbOffset = value; return; } else if (id == "xfb_stride") { // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents); else if (value >= (int)TQualifier::layoutXfbStrideEnd) error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1); if (value < (int)TQualifier::layoutXfbStrideEnd) qualifier.layoutXfbStride = value; return; } } if (id == "input_attachment_index") { requireVulkan(loc, "input_attachment_index"); if (value >= (int)TQualifier::layoutAttachmentEnd) error(loc, "attachment index is too large", id.c_str(), ""); else qualifier.layoutAttachment = value; return; } if (id == "constant_id") { setSpecConstantId(loc, qualifier, value); return; } switch (language) { case EShLangVertex: break; case EShLangTessControl: if (id == "vertices") { if (value == 0) error(loc, "must be greater than 0", "vertices", ""); else // publicType.shaderQualifiers.vertices = value; warn(loc, "ignored", id.c_str(), ""); return; } break; case EShLangTessEvaluation: break; case EShLangGeometry: if (id == "invocations") { if (value == 0) error(loc, "must be at least 1", "invocations", ""); else // publicType.shaderQualifiers.invocations = value; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "max_vertices") { // publicType.shaderQualifiers.vertices = value; warn(loc, "ignored", id.c_str(), ""); if (value > resources.maxGeometryOutputVertices) error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); return; } if (id == "stream") { qualifier.layoutStream = value; return; } break; case EShLangFragment: if (id == "index") { qualifier.layoutIndex = value; return; } break; case EShLangCompute: if (id.compare(0, 11, "local_size_") == 0) { if (id == "local_size_x") { // publicType.shaderQualifiers.localSize[0] = value; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "local_size_y") { // publicType.shaderQualifiers.localSize[1] = value; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "local_size_z") { // publicType.shaderQualifiers.localSize[2] = value; warn(loc, "ignored", id.c_str(), ""); return; } if (spvVersion.spv != 0) { if (id == "local_size_x_id") { // publicType.shaderQualifiers.localSizeSpecId[0] = value; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "local_size_y_id") { // publicType.shaderQualifiers.localSizeSpecId[1] = value; warn(loc, "ignored", id.c_str(), ""); return; } if (id == "local_size_z_id") { // publicType.shaderQualifiers.localSizeSpecId[2] = value; warn(loc, "ignored", id.c_str(), ""); return; } } } break; default: break; } error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); } void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value) { if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { error(loc, "specialization-constant id is too large", "constant_id", ""); } else { qualifier.layoutSpecConstantId = value; qualifier.specConstant = true; if (! intermediate.addUsedConstantId(value)) error(loc, "specialization-constant id already used", "constant_id", ""); } return; } // Merge any layout qualifier information from src into dst, leaving everything else in dst alone // // "More than one layout qualifier may appear in a single declaration. // Additionally, the same layout-qualifier-name can occur multiple times // within a layout qualifier or across multiple layout qualifiers in the // same declaration. When the same layout-qualifier-name occurs // multiple times, in a single declaration, the last occurrence overrides // the former occurrence(s). Further, if such a layout-qualifier-name // will effect subsequent declarations or other observable behavior, it // is only the last occurrence that will have any effect, behaving as if // the earlier occurrence(s) within the declaration are not present. // This is also true for overriding layout-qualifier-names, where one // overrides the other (e.g., row_major vs. column_major); only the last // occurrence has any effect." // void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) { if (src.hasMatrix()) dst.layoutMatrix = src.layoutMatrix; if (src.hasPacking()) dst.layoutPacking = src.layoutPacking; if (src.hasStream()) dst.layoutStream = src.layoutStream; if (src.hasFormat()) dst.layoutFormat = src.layoutFormat; if (src.hasXfbBuffer()) dst.layoutXfbBuffer = src.layoutXfbBuffer; if (src.hasAlign()) dst.layoutAlign = src.layoutAlign; if (! inheritOnly) { if (src.hasLocation()) dst.layoutLocation = src.layoutLocation; if (src.hasComponent()) dst.layoutComponent = src.layoutComponent; if (src.hasIndex()) dst.layoutIndex = src.layoutIndex; if (src.hasOffset()) dst.layoutOffset = src.layoutOffset; if (src.hasSet()) dst.layoutSet = src.layoutSet; if (src.layoutBinding != TQualifier::layoutBindingEnd) dst.layoutBinding = src.layoutBinding; if (src.hasXfbStride()) dst.layoutXfbStride = src.layoutXfbStride; if (src.hasXfbOffset()) dst.layoutXfbOffset = src.layoutXfbOffset; if (src.hasAttachment()) dst.layoutAttachment = src.layoutAttachment; if (src.hasSpecConstantId()) dst.layoutSpecConstantId = src.layoutSpecConstantId; if (src.layoutPushConstant) dst.layoutPushConstant = true; } } // // Look up a function name in the symbol table, and make sure it is a function. // // First, look for an exact match. If there is none, use the generic selector // TParseContextBase::selectFunction() to find one, parameterized by the // convertible() and better() predicates defined below. // // Return the function symbol if found, otherwise nullptr. // const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth, TIntermTyped*& args) { if (symbolTable.isFunctionNameVariable(call.getName())) { error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); return nullptr; } // first, look for an exact match bool dummyScope; TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth); if (symbol) return symbol->getAsFunction(); // no exact match, use the generic selector, parameterized by the GLSL rules // create list of candidates to send TVector<const TFunction*> candidateList; symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); // These built-in ops can accept any type, so we bypass the argument selection if (candidateList.size() == 1 && builtIn && (candidateList[0]->getBuiltInOp() == EOpMethodAppend || candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip || candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter || candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter || candidateList[0]->getBuiltInOp() == EOpMethodAppend || candidateList[0]->getBuiltInOp() == EOpMethodConsume)) { return candidateList[0]; } bool allowOnlyUpConversions = true; // can 'from' convert to 'to'? const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool { if (from == to) return true; // no aggregate conversions if (from.isArray() || to.isArray() || from.isStruct() || to.isStruct()) return false; switch (op) { case EOpInterlockedAdd: case EOpInterlockedAnd: case EOpInterlockedCompareExchange: case EOpInterlockedCompareStore: case EOpInterlockedExchange: case EOpInterlockedMax: case EOpInterlockedMin: case EOpInterlockedOr: case EOpInterlockedXor: // We do not promote the texture or image type for these ocodes. Normally that would not // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this // stage it's merely e.g, a basic integer type. // // Instead, we want to promote other arguments, but stay within the same family. In other // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor, // but it is allowed to promote its other arguments. if (arg == 0) return false; break; case EOpMethodSample: case EOpMethodSampleBias: case EOpMethodSampleCmp: case EOpMethodSampleCmpLevelZero: case EOpMethodSampleGrad: case EOpMethodSampleLevel: case EOpMethodLoad: case EOpMethodGetDimensions: case EOpMethodGetSamplePosition: case EOpMethodGather: case EOpMethodCalculateLevelOfDetail: case EOpMethodCalculateLevelOfDetailUnclamped: case EOpMethodGatherRed: case EOpMethodGatherGreen: case EOpMethodGatherBlue: case EOpMethodGatherAlpha: case EOpMethodGatherCmp: case EOpMethodGatherCmpRed: case EOpMethodGatherCmpGreen: case EOpMethodGatherCmpBlue: case EOpMethodGatherCmpAlpha: case EOpMethodAppend: case EOpMethodRestartStrip: // those are method calls, the object type can not be changed // they are equal if the dim and type match (is dim sufficient?) if (arg == 0) return from.getSampler().type == to.getSampler().type && from.getSampler().arrayed == to.getSampler().arrayed && from.getSampler().shadow == to.getSampler().shadow && from.getSampler().ms == to.getSampler().ms && from.getSampler().dim == to.getSampler().dim; break; default: break; } // basic types have to be convertible if (allowOnlyUpConversions) if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall)) return false; // shapes have to be convertible if ((from.isScalarOrVec1() && to.isScalarOrVec1()) || (from.isScalarOrVec1() && to.isVector()) || (from.isScalarOrVec1() && to.isMatrix()) || (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize())) return true; // TODO: what are the matrix rules? they go here return false; }; // Is 'to2' a better conversion than 'to1'? // Ties should not be considered as better. // Assumes 'convertible' already said true. const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool { // exact match is always better than mismatch if (from == to2) return from != to1; if (from == to1) return false; // shape changes are always worse if (from.isScalar() || from.isVector()) { if (from.getVectorSize() == to2.getVectorSize() && from.getVectorSize() != to1.getVectorSize()) return true; if (from.getVectorSize() == to1.getVectorSize() && from.getVectorSize() != to2.getVectorSize()) return false; } // Handle sampler betterness: An exact sampler match beats a non-exact match. // (If we just looked at basic type, all EbtSamplers would look the same). // If any type is not a sampler, just use the linearize function below. if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) { // We can ignore the vector size in the comparison. TSampler to1Sampler = to1.getSampler(); TSampler to2Sampler = to2.getSampler(); to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize; if (from.getSampler() == to2Sampler) return from.getSampler() != to1Sampler; if (from.getSampler() == to1Sampler) return false; } // Might or might not be changing shape, which means basic type might // or might not match, so within that, the question is how big a // basic-type conversion is being done. // // Use a hierarchy of domains, translated to order of magnitude // in a linearized view: // - floating-point vs. integer // - 32 vs. 64 bit (or width in general) // - bool vs. non bool // - signed vs. not signed const auto linearize = [](const TBasicType& basicType) -> int { switch (basicType) { case EbtBool: return 1; case EbtInt: return 10; case EbtUint: return 11; case EbtInt64: return 20; case EbtUint64: return 21; case EbtFloat: return 100; case EbtDouble: return 110; default: return 0; } }; return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) < abs(linearize(to1.getBasicType()) - linearize(from.getBasicType())); }; // for ambiguity reporting bool tie = false; // send to the generic selector const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie); if (bestMatch == nullptr) { // If there is nothing selected by allowing only up-conversions (to a larger linearize() value), // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any // upconversions possible. allowOnlyUpConversions = false; bestMatch = selectFunction(candidateList, call, convertible, better, tie); } if (bestMatch == nullptr) { error(loc, "no matching overloaded function found", call.getName().c_str(), ""); return nullptr; } // For built-ins, we can convert across the arguments. This will happen in several steps: // Step 1: If there's an exact match, use it. // Step 2a: Otherwise, get the operator from the best match and promote arguments: // Step 2b: reconstruct the TFunction based on the new arg types // Step 3: Re-select after type promotion is applied, to find proper candidate. if (builtIn) { // Step 1: If there's an exact match, use it. if (call.getMangledName() == bestMatch->getMangledName()) return bestMatch; // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we // are that kind of operator. if (args != nullptr) { // The arg list can be a unary node, or an aggregate. We have to handle both. // We will use the normal promote() facilities, which require an interm node. TIntermOperator* promote = nullptr; if (call.getParamCount() == 1) { promote = new TIntermUnary(bestMatch->getBuiltInOp()); promote->getAsUnaryNode()->setOperand(args->getAsTyped()); } else { promote = new TIntermAggregate(bestMatch->getBuiltInOp()); promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); } if (! intermediate.promote(promote)) return nullptr; // Obtain the promoted arg list. if (call.getParamCount() == 1) { args = promote->getAsUnaryNode()->getOperand(); } else { promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); } } // Step 2b: reconstruct the TFunction based on the new arg types TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp()); if (args->getAsAggregate()) { // Handle aggregates: put all args into the new function call for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) { // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly. TParameter param = { 0, new TType, nullptr }; param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType()); convertedCall.addParameter(param); } } else if (args->getAsUnaryNode()) { // Handle unaries: put all args into the new function call TParameter param = { 0, new TType, nullptr }; param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType()); convertedCall.addParameter(param); } else if (args->getAsTyped()) { // Handle bare e.g, floats, not in an aggregate. TParameter param = { 0, new TType, nullptr }; param.type->shallowCopy(args->getAsTyped()->getType()); convertedCall.addParameter(param); } else { assert(0); // unknown argument list. return nullptr; } // Step 3: Re-select after type promotion, to find proper candidate // send to the generic selector bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie); // At this point, there should be no tie. } if (tie) error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); // Append default parameter values if needed if (!tie && bestMatch != nullptr) { for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) { handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue); } } return bestMatch; } // // Do everything necessary to handle a typedef declaration, for a single symbol. // // 'parseType' is the type part of the declaration (to the left) // 'arraySizes' is the arrayness tagged on the identifier (to the right) // void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType) { TVariable* typeSymbol = new TVariable(&identifier, parseType, true); if (! symbolTable.insert(*typeSymbol)) error(loc, "name already defined", "typedef", identifier.c_str()); } // Do everything necessary to handle a struct declaration, including // making IO aliases because HLSL allows mixed IO in a struct that specializes // based on the usage (input, output, uniform, none). void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type) { // If it was named, which means the type can be reused later, add // it to the symbol table. (Unless it's a block, in which // case the name is not a type.) if (type.getBasicType() == EbtBlock || structName.size() == 0) return; TVariable* userTypeDef = new TVariable(&structName, type, true); if (! symbolTable.insert(*userTypeDef)) { error(loc, "redefinition", structName.c_str(), "struct"); return; } // See if we need IO aliases for the structure typeList const auto condAlloc = [](bool pred, TTypeList*& list) { if (pred && list == nullptr) list = new TTypeList; }; tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform); condAlloc( hasInput(member->type->getQualifier()), newLists.input); condAlloc( hasOutput(member->type->getQualifier()), newLists.output); if (member->type->isStruct()) { auto it = ioTypeMap.find(member->type->getStruct()); if (it != ioTypeMap.end()) { condAlloc(it->second.uniform != nullptr, newLists.uniform); condAlloc(it->second.input != nullptr, newLists.input); condAlloc(it->second.output != nullptr, newLists.output); } } } if (newLists.uniform == nullptr && newLists.input == nullptr && newLists.output == nullptr) { // Won't do any IO caching, clear up the type and get out now. for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) clearUniformInputOutput(member->type->getQualifier()); return; } // We have IO involved. // Make a pure typeList for the symbol table, and cache side copies of IO versions. for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) { if (s != nullptr) { ioMember.type = new TType; ioMember.type->shallowCopy(*member->type); ioMember.type->setStruct(s); } }; const auto newMember = [&](TTypeLoc& m) { if (m.type == nullptr) { m.type = new TType; m.type->shallowCopy(*member->type); } }; TTypeLoc newUniformMember = { nullptr, member->loc }; TTypeLoc newInputMember = { nullptr, member->loc }; TTypeLoc newOutputMember = { nullptr, member->loc }; if (member->type->isStruct()) { // swap in an IO child if there is one auto it = ioTypeMap.find(member->type->getStruct()); if (it != ioTypeMap.end()) { inheritStruct(it->second.uniform, newUniformMember); inheritStruct(it->second.input, newInputMember); inheritStruct(it->second.output, newOutputMember); } } if (newLists.uniform) { newMember(newUniformMember); // inherit default matrix layout (changeable via #pragma pack_matrix), if none given. if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone) newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix; correctUniform(newUniformMember.type->getQualifier()); newLists.uniform->push_back(newUniformMember); } if (newLists.input) { newMember(newInputMember); correctInput(newInputMember.type->getQualifier()); newLists.input->push_back(newInputMember); } if (newLists.output) { newMember(newOutputMember); correctOutput(newOutputMember.type->getQualifier()); newLists.output->push_back(newOutputMember); } // make original pure clearUniformInputOutput(member->type->getQualifier()); } ioTypeMap[type.getStruct()] = newLists; } // Lookup a user-type by name. // If found, fill in the type and return the defining symbol. // If not found, return nullptr. TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type) { TSymbol* symbol = symbolTable.find(typeName); if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { type.shallowCopy(symbol->getType()); return symbol; } else return nullptr; } // // Do everything necessary to handle a variable (non-block) declaration. // Either redeclaring a variable, or making a new one, updating the symbol // table, and all error checking. // // Returns a subtree node that computes an initializer, if needed. // Returns nullptr if there is no code to execute for initialization. // // 'parseType' is the type part of the declaration (to the left) // 'arraySizes' is the arrayness tagged on the identifier (to the right) // TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type, TIntermTyped* initializer) { if (voidErrorCheck(loc, identifier, type.getBasicType())) return nullptr; // Global consts with initializers that are non-const act like EvqGlobal in HLSL. // This test is implicitly recursive, because initializers propagate constness // up the aggregate node tree during creation. E.g, for: // { { 1, 2 }, { 3, 4 } } // the initializer list is marked EvqConst at the top node, and remains so here. However: // { 1, { myvar, 2 }, 3 } // is not a const intializer, and still becomes EvqGlobal here. const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst); if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) { // Force to global type.getQualifier().storage = EvqGlobal; } // make const and initialization consistent fixConstInit(loc, identifier, type, initializer); // Check for redeclaration of built-ins and/or attempting to declare a reserved name TSymbol* symbol = nullptr; inheritGlobalDefaults(type.getQualifier()); const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true); // correct IO in the type switch (type.getQualifier().storage) { case EvqGlobal: case EvqTemporary: clearUniformInputOutput(type.getQualifier()); break; case EvqUniform: case EvqBuffer: correctUniform(type.getQualifier()); if (type.isStruct()) { auto it = ioTypeMap.find(type.getStruct()); if (it != ioTypeMap.end()) type.setStruct(it->second.uniform); } break; default: break; } // Declare the variable if (type.isArray()) { // array case declareArray(loc, identifier, type, symbol, !flattenVar); } else { // non-array case if (symbol == nullptr) symbol = declareNonArray(loc, identifier, type, !flattenVar); else if (type != symbol->getType()) error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); } if (symbol == nullptr) return nullptr; if (flattenVar) flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel()); if (initializer == nullptr) return nullptr; // Deal with initializer TVariable* variable = symbol->getAsVariable(); if (variable == nullptr) { error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); return nullptr; } return executeInitializer(loc, initializer, variable); } // Pick up global defaults from the provide global defaults into dst. void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const { if (dst.storage == EvqVaryingOut) { if (! dst.hasStream() && language == EShLangGeometry) dst.layoutStream = globalOutputDefaults.layoutStream; if (! dst.hasXfbBuffer()) dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; } } // // Make an internal-only variable whose name is for debug purposes only // and won't be searched for. Callers will only use the return value to use // the variable, not the name to look it up. It is okay if the name // is the same as other names; there won't be any conflict. // TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const { TString* nameString = NewPoolTString(name); TVariable* variable = new TVariable(nameString, type); symbolTable.makeInternalVariable(*variable); return variable; } // Make a symbol node holding a new internal temporary variable. TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name, const TType& type) const { TVariable* tmpVar = makeInternalVariable(name, type); tmpVar->getWritableType().getQualifier().makeTemporary(); return intermediate.addSymbol(*tmpVar, loc); } // // Declare a non-array variable, the main point being there is no redeclaration // for resizing allowed. // // Return the successfully declared variable. // TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type, bool track) { // make a new variable TVariable* variable = new TVariable(&identifier, type); // add variable to symbol table if (symbolTable.insert(*variable)) { if (track && symbolTable.atGlobalLevel()) trackLinkage(*variable); return variable; } error(loc, "redefinition", variable->getName().c_str(), ""); return nullptr; } // // Handle all types of initializers from the grammar. // // Returning nullptr just means there is no code to execute to handle the // initializer, which will, for example, be the case for constant initializers. // TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) { // // Identifier must be of type constant, a global, or a temporary, and // starting at version 120, desktop allows uniforms to have initializers. // TStorageQualifier qualifier = variable->getType().getQualifier().storage; // // If the initializer was from braces { ... }, we convert the whole subtree to a // constructor-style subtree, allowing the rest of the code to operate // identically for both kinds of initializers. // // // Type can't be deduced from the initializer list, so a skeletal type to // follow has to be passed in. Constness and specialization-constness // should be deduced bottom up, not dictated by the skeletal type. // TType skeletalType; skeletalType.shallowCopy(variable->getType()); skeletalType.getQualifier().makeTemporary(); if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull) initializer = convertInitializerList(loc, skeletalType, initializer, nullptr); if (initializer == nullptr) { // error recovery; don't leave const without constant values if (qualifier == EvqConst) variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } // Fix outer arrayness if variable is unsized, getting size from the initializer if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray()) variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); // Inner arrayness can also get set by an initializer if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && initializer->getType().getArraySizes()->getNumDims() == variable->getType().getArraySizes()->getNumDims()) { // adopt unsized sizes from the initializer's sizes for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) { variable->getWritableType().getArraySizes()->setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d)); } } } // Uniform and global consts require a constant initializer if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) { error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } // Const variables require a constant initializer if (qualifier == EvqConst) { if (initializer->getType().getQualifier().storage != EvqConst) { variable->getWritableType().getQualifier().storage = EvqConstReadOnly; qualifier = EvqConstReadOnly; } } if (qualifier == EvqConst || qualifier == EvqUniform) { // Compile-time tagging of the variable with its constant value... initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); if (initializer != nullptr && variable->getType() != initializer->getType()) initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer); if (initializer == nullptr || !initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) { error(loc, "non-matching or non-convertible constant type for const initializer", variable->getType().getStorageQualifierString(), ""); variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); } else { // normal assigning of a value to a variable... specializationCheck(loc, initializer->getType(), "initializer"); TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer); if (initNode == nullptr) assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return initNode; } return nullptr; } // // Reprocess any initializer-list { ... } parts of the initializer. // Need to hierarchically assign correct types and implicit // conversions. Will do this mimicking the same process used for // creating a constructor-style initializer, ensuring we get the // same form. // // Returns a node representing an expression for the initializer list expressed // as the correct type. // // Returns nullptr if there is an error. // TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer, TIntermTyped* scalarInit) { // Will operate recursively. Once a subtree is found that is constructor style, // everything below it is already good: Only the "top part" of the initializer // can be an initializer list, where "top part" can extend for several (or all) levels. // see if we have bottomed out in the tree within the initializer-list part TIntermAggregate* initList = initializer->getAsAggregate(); if (initList == nullptr || initList->getOp() != EOpNull) { // We don't have a list, but if it's a scalar and the 'type' is a // composite, we need to lengthen below to make it useful. // Otherwise, this is an already formed object to initialize with. if (type.isScalar() || !initializer->getType().isScalar()) return initializer; else initList = intermediate.makeAggregate(initializer); } // Of the initializer-list set of nodes, need to process bottom up, // so recurse deep, then process on the way up. // Go down the tree here... if (type.isArray()) { // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. // Later on, initializer execution code will deal with array size logic. TType arrayType; arrayType.shallowCopy(type); // sharing struct stuff is fine arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below // edit array sizes to fill in unsized dimensions if (type.isUnsizedArray()) arrayType.changeOuterArraySize((int)initList->getSequence().size()); // set unsized array dimensions that can be derived from the initializer's first element if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) { TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); if (firstInit->getType().isArray() && arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) { if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize) arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); } } } // lengthen list to be long enough lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit); // recursively process each element TType elementType(arrayType, 0); // dereferenced type for (int i = 0; i < arrayType.getOuterArraySize(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped(), scalarInit); if (initList->getSequence()[i] == nullptr) return nullptr; } return addConstructor(loc, initList, arrayType); } else if (type.isStruct()) { // do we have implicit assignments to opaques? for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) { if ((*type.getStruct())[i].type->containsOpaque()) { error(loc, "cannot implicitly initialize opaque members", "initializer list", ""); return nullptr; } } // lengthen list to be long enough lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit); if (type.getStruct()->size() != initList->getSequence().size()) { error(loc, "wrong number of structure members", "initializer list", ""); return nullptr; } for (size_t i = 0; i < type.getStruct()->size(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped(), scalarInit); if (initList->getSequence()[i] == nullptr) return nullptr; } } else if (type.isMatrix()) { if (type.computeNumComponents() == (int)initList->getSequence().size()) { // This means the matrix is initialized component-wise, rather than as // a series of rows and columns. We can just use the list directly as // a constructor; no further processing needed. } else { // lengthen list to be long enough lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit); if (type.getMatrixCols() != (int)initList->getSequence().size()) { error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); return nullptr; } TType vectorType(type, 0); // dereferenced type for (int i = 0; i < type.getMatrixCols(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped(), scalarInit); if (initList->getSequence()[i] == nullptr) return nullptr; } } } else if (type.isVector()) { // lengthen list to be long enough lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit); // error check; we're at bottom, so work is finished below if (type.getVectorSize() != (int)initList->getSequence().size()) { error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str()); return nullptr; } } else if (type.isScalar()) { // lengthen list to be long enough lengthenList(loc, initList->getSequence(), 1, scalarInit); if ((int)initList->getSequence().size() != 1) { error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str()); return nullptr; } } else { error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); return nullptr; } // Now that the subtree is processed, process this node as if the // initializer list is a set of arguments to a constructor. TIntermTyped* emulatedConstructorArguments; if (initList->getSequence().size() == 1) emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped(); else emulatedConstructorArguments = initList; return addConstructor(loc, emulatedConstructorArguments, type); } // Lengthen list to be long enough to cover any gap from the current list size // to 'size'. If the list is longer, do nothing. // The value to lengthen with is the default for short lists. // // By default, lists that are too short due to lack of initializers initialize to zero. // Alternatively, it could be a scalar initializer for a structure. Both cases are handled, // based on whether something is passed in as 'scalarInit'. // // 'scalarInit' must be safe to use each time this is called (no side effects replication). // void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit) { for (int c = (int)list.size(); c < size; ++c) { if (scalarInit == nullptr) list.push_back(intermediate.addConstantUnion(0, loc)); else list.push_back(scalarInit); } } // // Test for the correctness of the parameters passed to various constructor functions // and also convert them to the right data type, if allowed and required. // // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type) { if (node == nullptr) return nullptr; // Construct identical type if (type == node->getType()) return node; // Handle the idiom "(struct type)<scalar value>" if (type.isStruct() && isScalarConstructor(node)) { // 'node' will almost always get used multiple times, so should not be used directly, // it would create a DAG instead of a tree, which might be okay (would // like to formalize that for constants and symbols), but if it has // side effects, they would get executed multiple times, which is not okay. if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) { TIntermAggregate* seq = intermediate.makeAggregate(loc); TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType()); seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc)); seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy)); seq->setOp(EOpComma); seq->setType(type); return seq; } else return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node); } return addConstructor(loc, node, type); } // Add a constructor, either from the grammar, or other programmatic reasons. // // 'node' is what to construct from. // 'type' is what type to construct. // // Returns the constructed object. // Return nullptr if it can't be done. // TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type) { TIntermAggregate* aggrNode = node->getAsAggregate(); TOperator op = intermediate.mapTypeToConstructorOp(type); // Combined texture-sampler constructors are completely semantic checked // in constructorTextureSamplerError() if (op == EOpConstructTextureSampler) return intermediate.setAggregateOperator(aggrNode, op, type, loc); TTypeList::const_iterator memberTypes; if (op == EOpConstructStruct) memberTypes = type.getStruct()->begin(); TType elementType; if (type.isArray()) { TType dereferenced(type, 0); elementType.shallowCopy(dereferenced); } else elementType.shallowCopy(type); bool singleArg; if (aggrNode != nullptr) { if (aggrNode->getOp() != EOpNull) singleArg = true; else singleArg = false; } else singleArg = true; TIntermTyped *newNode; if (singleArg) { // Handle array -> array conversion // Constructing an array of one type from an array of another type is allowed, // assuming there are enough components available (semantic-checked earlier). if (type.isArray() && node->isArray()) newNode = convertArray(node, type); // If structure constructor or array constructor is being called // for only one parameter inside the aggregate, we need to call constructAggregate function once. else if (type.isArray()) newNode = constructAggregate(node, elementType, 1, node->getLoc()); else if (op == EOpConstructStruct) newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); else { // shape conversion for matrix constructor from scalar. HLSL semantics are: scalar // is replicated into every element of the matrix (not just the diagnonal), so // that is handled specially here. if (type.isMatrix() && node->getType().isScalarOrVec1()) node = intermediate.addShapeConversion(type, node); newNode = constructBuiltIn(type, op, node, node->getLoc(), false); } if (newNode && (type.isArray() || op == EOpConstructStruct)) newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); return newNode; } // // Handle list of arguments. // TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor // if the structure constructor contains more than one parameter, then construct // each parameter int paramCount = 0; // keeps a track of the constructor parameter number being checked // for each parameter to the constructor call, check to see if the right type is passed or convert them // to the right type if possible (and allowed). // for structure constructors, just check if the right type is passed, no conversion is allowed. for (TIntermSequence::iterator p = sequenceVector.begin(); p != sequenceVector.end(); p++, paramCount++) { if (type.isArray()) newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc()); else if (op == EOpConstructStruct) newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc()); else newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); if (newNode) *p = newNode; else return nullptr; } TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc); return constructor; } // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value // for the parameter to the constructor (passed to this function). Essentially, it converts // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a // float, then float is converted to int. // // Returns nullptr for an error or the constructed node. // TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset) { TIntermTyped* newNode; TOperator basicOp; // // First, convert types as needed. // switch (op) { case EOpConstructF16Vec2: case EOpConstructF16Vec3: case EOpConstructF16Vec4: case EOpConstructF16Mat2x2: case EOpConstructF16Mat2x3: case EOpConstructF16Mat2x4: case EOpConstructF16Mat3x2: case EOpConstructF16Mat3x3: case EOpConstructF16Mat3x4: case EOpConstructF16Mat4x2: case EOpConstructF16Mat4x3: case EOpConstructF16Mat4x4: case EOpConstructFloat16: basicOp = EOpConstructFloat16; break; case EOpConstructVec2: case EOpConstructVec3: case EOpConstructVec4: case EOpConstructMat2x2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3x3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4x4: case EOpConstructFloat: basicOp = EOpConstructFloat; break; case EOpConstructDVec2: case EOpConstructDVec3: case EOpConstructDVec4: case EOpConstructDMat2x2: case EOpConstructDMat2x3: case EOpConstructDMat2x4: case EOpConstructDMat3x2: case EOpConstructDMat3x3: case EOpConstructDMat3x4: case EOpConstructDMat4x2: case EOpConstructDMat4x3: case EOpConstructDMat4x4: case EOpConstructDouble: basicOp = EOpConstructDouble; break; case EOpConstructI16Vec2: case EOpConstructI16Vec3: case EOpConstructI16Vec4: case EOpConstructInt16: basicOp = EOpConstructInt16; break; case EOpConstructIVec2: case EOpConstructIVec3: case EOpConstructIVec4: case EOpConstructIMat2x2: case EOpConstructIMat2x3: case EOpConstructIMat2x4: case EOpConstructIMat3x2: case EOpConstructIMat3x3: case EOpConstructIMat3x4: case EOpConstructIMat4x2: case EOpConstructIMat4x3: case EOpConstructIMat4x4: case EOpConstructInt: basicOp = EOpConstructInt; break; case EOpConstructU16Vec2: case EOpConstructU16Vec3: case EOpConstructU16Vec4: case EOpConstructUint16: basicOp = EOpConstructUint16; break; case EOpConstructUVec2: case EOpConstructUVec3: case EOpConstructUVec4: case EOpConstructUMat2x2: case EOpConstructUMat2x3: case EOpConstructUMat2x4: case EOpConstructUMat3x2: case EOpConstructUMat3x3: case EOpConstructUMat3x4: case EOpConstructUMat4x2: case EOpConstructUMat4x3: case EOpConstructUMat4x4: case EOpConstructUint: basicOp = EOpConstructUint; break; case EOpConstructBVec2: case EOpConstructBVec3: case EOpConstructBVec4: case EOpConstructBMat2x2: case EOpConstructBMat2x3: case EOpConstructBMat2x4: case EOpConstructBMat3x2: case EOpConstructBMat3x3: case EOpConstructBMat3x4: case EOpConstructBMat4x2: case EOpConstructBMat4x3: case EOpConstructBMat4x4: case EOpConstructBool: basicOp = EOpConstructBool; break; default: error(loc, "unsupported construction", "", ""); return nullptr; } newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); if (newNode == nullptr) { error(loc, "can't convert", "constructor", ""); return nullptr; } // // Now, if there still isn't an operation to do the construction, and we need one, add one. // // Otherwise, skip out early. if (subset || (newNode != node && newNode->getType() == type)) return newNode; // setAggregateOperator will insert a new node for the constructor, as needed. return intermediate.setAggregateOperator(newNode, op, type, loc); } // Convert the array in node to the requested type, which is also an array. // Returns nullptr on failure, otherwise returns aggregate holding the list of // elements needed to construct the array. TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type) { assert(node->isArray() && type.isArray()); if (node->getType().computeNumComponents() < type.computeNumComponents()) return nullptr; // TODO: write an argument replicator, for the case the argument should not be // executed multiple times, yet multiple copies are needed. TIntermTyped* constructee = node->getAsTyped(); // track where we are in consuming the argument int constructeeElement = 0; int constructeeComponent = 0; // bump up to the next component to consume const auto getNextComponent = [&]() { TIntermTyped* component; component = handleBracketDereference(node->getLoc(), constructee, intermediate.addConstantUnion(constructeeElement, node->getLoc())); if (component->isVector()) component = handleBracketDereference(node->getLoc(), component, intermediate.addConstantUnion(constructeeComponent, node->getLoc())); // bump component pointer up ++constructeeComponent; if (constructeeComponent == constructee->getVectorSize()) { constructeeComponent = 0; ++constructeeElement; } return component; }; // make one subnode per constructed array element TIntermAggregate* constructor = nullptr; TType derefType(type, 0); TType speculativeComponentType(derefType, 0); TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType; TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType); TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize()); for (int e = 0; e < type.getOuterArraySize(); ++e) { // construct an element TIntermTyped* elementArg; if (type.getVectorSize() == constructee->getVectorSize()) { // same element shape elementArg = handleBracketDereference(node->getLoc(), constructee, intermediate.addConstantUnion(e, node->getLoc())); } else { // mismatched element shapes if (type.getVectorSize() == 1) elementArg = getNextComponent(); else { // make a vector TIntermAggregate* elementConstructee = nullptr; for (int c = 0; c < type.getVectorSize(); ++c) elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent()); elementArg = addConstructor(node->getLoc(), elementConstructee, crossType); } } // convert basic types elementArg = intermediate.addConversion(componentOp, derefType, elementArg); if (elementArg == nullptr) return nullptr; // combine with top-level constructor constructor = intermediate.growAggregate(constructor, elementArg); } return constructor; } // This function tests for the type of the parameters to the structure or array constructor. Raises // an error message if the expected type does not match the parameter passed to the constructor. // // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. // TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc) { // Handle cases that map more 1:1 between constructor arguments and constructed. TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); if (converted == nullptr || converted->getType() != type) { error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); return nullptr; } return converted; } // // Do everything needed to add an interface block. // void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName) { assert(type.getWritableStruct() != nullptr); // Clean up top-level decorations that don't belong. switch (type.getQualifier().storage) { case EvqUniform: case EvqBuffer: correctUniform(type.getQualifier()); break; case EvqVaryingIn: correctInput(type.getQualifier()); break; case EvqVaryingOut: correctOutput(type.getQualifier()); break; default: break; } TTypeList& typeList = *type.getWritableStruct(); // fix and check for member storage qualifiers and types that don't belong within a block for (unsigned int member = 0; member < typeList.size(); ++member) { TType& memberType = *typeList[member].type; TQualifier& memberQualifier = memberType.getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; globalQualifierFix(memberLoc, memberQualifier); memberQualifier.storage = type.getQualifier().storage; if (memberType.isStruct()) { // clean up and pick up the right set of decorations auto it = ioTypeMap.find(memberType.getStruct()); switch (type.getQualifier().storage) { case EvqUniform: case EvqBuffer: correctUniform(type.getQualifier()); if (it != ioTypeMap.end() && it->second.uniform) memberType.setStruct(it->second.uniform); break; case EvqVaryingIn: correctInput(type.getQualifier()); if (it != ioTypeMap.end() && it->second.input) memberType.setStruct(it->second.input); break; case EvqVaryingOut: correctOutput(type.getQualifier()); if (it != ioTypeMap.end() && it->second.output) memberType.setStruct(it->second.output); break; default: break; } } } // Make default block qualification, and adjust the member qualifications TQualifier defaultQualification; switch (type.getQualifier().storage) { case EvqUniform: defaultQualification = globalUniformDefaults; break; case EvqBuffer: defaultQualification = globalBufferDefaults; break; case EvqVaryingIn: defaultQualification = globalInputDefaults; break; case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; default: defaultQualification.clear(); break; } // Special case for "push_constant uniform", which has a default of std430, // contrary to normal uniform defaults, and can't have a default tracked for it. if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking()) type.getQualifier().layoutPacking = ElpStd430; // fix and check for member layout qualifiers mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true); bool memberWithLocation = false; bool memberWithoutLocation = false; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; if (memberQualifier.hasStream()) { if (defaultQualification.layoutStream != memberQualifier.layoutStream) error(memberLoc, "member cannot contradict block", "stream", ""); } // "This includes a block's inheritance of the // current global default buffer, a block member's inheritance of the block's // buffer, and the requirement that any *xfb_buffer* declared on a block // member must match the buffer inherited from the block." if (memberQualifier.hasXfbBuffer()) { if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); } if (memberQualifier.hasLocation()) { switch (type.getQualifier().storage) { case EvqVaryingIn: case EvqVaryingOut: memberWithLocation = true; break; default: break; } } else memberWithoutLocation = true; TQualifier newMemberQualification = defaultQualification; mergeQualifiers(newMemberQualification, memberQualifier); memberQualifier = newMemberQualification; } // Process the members fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation); fixBlockXfbOffsets(type.getQualifier(), typeList); fixBlockUniformOffsets(type.getQualifier(), typeList); // reverse merge, so that currentBlockQualifier now has all layout information // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true); // // Build and add the interface block as a new type named 'blockName' // // Use the instance name as the interface name if one exists, else the block name. const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName(); TType blockType(&typeList, interfaceName, type.getQualifier()); if (type.isArray()) blockType.transferArraySizes(type.getArraySizes()); // Add the variable, as anonymous or named instanceName. // Make an anonymous variable if no name was provided. if (instanceName == nullptr) instanceName = NewPoolTString(""); TVariable& variable = *new TVariable(instanceName, blockType); if (! symbolTable.insert(variable)) { if (*instanceName == "") error(loc, "nameless block contains a member that already has a name at global scope", "" /* blockName->c_str() */, ""); else error(loc, "block instance name redefinition", variable.getName().c_str(), ""); return; } // Save it in the AST for linker use. if (symbolTable.atGlobalLevel()) trackLinkage(variable); } // // "For a block, this process applies to the entire block, or until the first member // is reached that has a location layout qualifier. When a block member is declared with a location // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, // until the next member declared with a location qualifier. The values used for locations do not have to be // declared in increasing order." void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) { // "If a block has no block-level location layout qualifier, it is required that either all or none of its members // have a location layout qualifier, or a compile-time error results." if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); else { if (memberWithLocation) { // remove any block-level location and make it per *every* member int nextLocation = 0; // by the rule above, initial value is not relevant if (qualifier.hasAnyLocation()) { nextLocation = qualifier.layoutLocation; qualifier.layoutLocation = TQualifier::layoutLocationEnd; if (qualifier.hasComponent()) { // "It is a compile-time error to apply the *component* qualifier to a ... block" error(loc, "cannot apply to a block", "component", ""); } if (qualifier.hasIndex()) { error(loc, "cannot apply to a block", "index", ""); } } for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; if (! memberQualifier.hasLocation()) { if (nextLocation >= (int)TQualifier::layoutLocationEnd) error(memberLoc, "location is too large", "location", ""); memberQualifier.layoutLocation = nextLocation; memberQualifier.layoutComponent = 0; } nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type, language); } } } } void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList) { // "If a block is qualified with xfb_offset, all its // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer // offsets." if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) return; int nextOffset = qualifier.layoutXfbOffset; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); bool containsDouble = false; int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble); // see if we need to auto-assign an offset to this member if (! memberQualifier.hasXfbOffset()) { // "if applied to an aggregate containing a double, the offset must also be a multiple of 8" if (containsDouble) RoundToPow2(nextOffset, 8); memberQualifier.layoutXfbOffset = nextOffset; } else nextOffset = memberQualifier.layoutXfbOffset; nextOffset += memberSize; } // The above gave all block members an offset, so we can take it off the block now, // which will avoid double counting the offset usage. qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; } // Calculate and save the offset of each block member, using the recursively // defined block offset rules and the user-provided offset and align. // // Also, compute and save the total size of the block. For the block's size, arrayness // is not taken into account, as each element is backed by a separate buffer. // void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList) { if (! qualifier.isUniformOrBuffer()) return; if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430) return; int offset = 0; int memberSize; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." // modify just the children's view of matrix layout, if there is one for this member TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; int dummyStride; int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking == ElpStd140, subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor); if (memberQualifier.hasOffset()) { // "The specified offset must be a multiple // of the base alignment of the type of the block member it qualifies, or a compile-time error results." if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) error(memberLoc, "must be a multiple of the member's alignment", "offset", ""); // "The offset qualifier forces the qualified member to start at or after the specified // integral-constant expression, which will be its byte offset from the beginning of the buffer. // "The actual offset of a member is computed as // follows: If offset was declared, start with that offset, otherwise start with the next available offset." offset = std::max(offset, memberQualifier.layoutOffset); } // "The actual alignment of a member will be the greater of the specified align alignment and the standard // (e.g., std140) base alignment for the member's type." if (memberQualifier.hasAlign()) memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); // "If the resulting offset is not a multiple of the actual alignment, // increase it to the first offset that is a multiple of // the actual alignment." RoundToPow2(offset, memberAlignment); typeList[member].type->getQualifier().layoutOffset = offset; offset += memberSize; } } // For an identifier that is already declared, add more qualification to it. void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) { TSymbol* symbol = symbolTable.find(identifier); if (symbol == nullptr) { error(loc, "identifier not previously declared", identifier.c_str(), ""); return; } if (symbol->getAsFunction()) { error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); return; } if (qualifier.isAuxiliary() || qualifier.isMemory() || qualifier.isInterpolation() || qualifier.hasLayout() || qualifier.storage != EvqTemporary || qualifier.precision != EpqNone) { error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); return; } // For read-only built-ins, add a new symbol for holding the modified qualifier. // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) if (symbol->isReadOnly()) symbol = symbolTable.copyUp(symbol); if (qualifier.invariant) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot change qualification after use", "invariant", ""); symbol->getWritableType().getQualifier().invariant = true; } else if (qualifier.noContraction) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot change qualification after use", "precise", ""); symbol->getWritableType().getQualifier().noContraction = true; } else if (qualifier.specConstant) { symbol->getWritableType().getQualifier().makeSpecConstant(); if (qualifier.hasSpecConstantId()) symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; } else warn(loc, "unknown requalification", "", ""); } void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) { for (unsigned int i = 0; i < identifiers.size(); ++i) addQualifierToExisting(loc, qualifier, *identifiers[i]); } // // Update the intermediate for the given input geometry // bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) { switch (geometry) { case ElgPoints: // fall through case ElgLines: // ... case ElgTriangles: // ... case ElgLinesAdjacency: // ... case ElgTrianglesAdjacency: // ... if (! intermediate.setInputPrimitive(geometry)) { error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); return false; } break; default: error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), ""); return false; } return true; } // // Update the intermediate for the given output geometry // bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) { // If this is not a geometry shader, ignore. It might be a mixed shader including several stages. // Since that's an OK situation, return true for success. if (language != EShLangGeometry) return true; switch (geometry) { case ElgPoints: case ElgLineStrip: case ElgTriangleStrip: if (! intermediate.setOutputPrimitive(geometry)) { error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); return false; } break; default: error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), ""); return false; } return true; } // // Selection attributes // void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection, const TAttributes& attributes) { if (selection == nullptr) return; for (auto it = attributes.begin(); it != attributes.end(); ++it) { switch (it->name) { case EatFlatten: selection->setFlatten(); break; case EatBranch: selection->setDontFlatten(); break; default: warn(loc, "attribute does not apply to a selection", "", ""); break; } } } // // Switch attributes // void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection, const TAttributes& attributes) { if (selection == nullptr) return; for (auto it = attributes.begin(); it != attributes.end(); ++it) { switch (it->name) { case EatFlatten: selection->setFlatten(); break; case EatBranch: selection->setDontFlatten(); break; default: warn(loc, "attribute does not apply to a switch", "", ""); break; } } } // // Loop attributes // void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop, const TAttributes& attributes) { if (loop == nullptr) return; for (auto it = attributes.begin(); it != attributes.end(); ++it) { switch (it->name) { case EatUnroll: loop->setUnroll(); break; case EatLoop: loop->setDontUnroll(); break; default: warn(loc, "attribute does not apply to a loop", "", ""); break; } } } // // Updating default qualifier for the case of a declaration with just a qualifier, // no type, block, or identifier. // void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) { if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { assert(language == EShLangTessControl || language == EShLangGeometry); // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; } if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) error(loc, "cannot change previously set layout value", "invocations", ""); } if (publicType.shaderQualifiers.geometry != ElgNone) { if (publicType.qualifier.storage == EvqVaryingIn) { switch (publicType.shaderQualifiers.geometry) { case ElgPoints: case ElgLines: case ElgLinesAdjacency: case ElgTriangles: case ElgTrianglesAdjacency: case ElgQuads: case ElgIsolines: break; default: error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); } } else if (publicType.qualifier.storage == EvqVaryingOut) { handleOutputGeometry(loc, publicType.shaderQualifiers.geometry); } else error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage)); } if (publicType.shaderQualifiers.spacing != EvsNone) intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing); if (publicType.shaderQualifiers.order != EvoNone) intermediate.setVertexOrder(publicType.shaderQualifiers.order); if (publicType.shaderQualifiers.pointMode) intermediate.setPointMode(); for (int i = 0; i < 3; ++i) { if (publicType.shaderQualifiers.localSize[i] > 1) { int max = 0; switch (i) { case 0: max = resources.maxComputeWorkGroupSizeX; break; case 1: max = resources.maxComputeWorkGroupSizeY; break; case 2: max = resources.maxComputeWorkGroupSizeZ; break; default: break; } if (intermediate.getLocalSize(i) > (unsigned int)max) error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); // Fix the existing constant gl_WorkGroupSize with this new information. TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); } if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]); // Set the workgroup built-in variable as a specialization constant TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); workGroupSize->getWritableType().getQualifier().specConstant = true; } } if (publicType.shaderQualifiers.earlyFragmentTests) intermediate.setEarlyFragmentTests(); const TQualifier& qualifier = publicType.qualifier; switch (qualifier.storage) { case EvqUniform: if (qualifier.hasMatrix()) globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; if (qualifier.hasPacking()) globalUniformDefaults.layoutPacking = qualifier.layoutPacking; break; case EvqBuffer: if (qualifier.hasMatrix()) globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; if (qualifier.hasPacking()) globalBufferDefaults.layoutPacking = qualifier.layoutPacking; break; case EvqVaryingIn: break; case EvqVaryingOut: if (qualifier.hasStream()) globalOutputDefaults.layoutStream = qualifier.layoutStream; if (qualifier.hasXfbBuffer()) globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); } break; default: error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); return; } } // // Take the sequence of statements that has been built up since the last case/default, // put it on the list of top-level nodes for the current (inner-most) switch statement, // and follow that by the case/default we are on now. (See switch topology comment on // TIntermSwitch.) // void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) { TIntermSequence* switchSequence = switchSequenceStack.back(); if (statements) { statements->setOperator(EOpSequence); switchSequence->push_back(statements); } if (branchNode) { // check all previous cases for the same label (or both are 'default') for (unsigned int s = 0; s < switchSequence->size(); ++s) { TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); if (prevBranch) { TIntermTyped* prevExpression = prevBranch->getExpression(); TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); if (prevExpression == nullptr && newExpression == nullptr) error(branchNode->getLoc(), "duplicate label", "default", ""); else if (prevExpression != nullptr && newExpression != nullptr && prevExpression->getAsConstantUnion() && newExpression->getAsConstantUnion() && prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) error(branchNode->getLoc(), "duplicated value", "case", ""); } } switchSequence->push_back(branchNode); } } // // Turn the top-level node sequence built up of wrapupSwitchSubsequence // into a switch node. // TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements, const TAttributes& attributes) { wrapupSwitchSubsequence(lastStatements, nullptr); if (expression == nullptr || (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) error(loc, "condition must be a scalar integer expression", "switch", ""); // If there is nothing to do, drop the switch but still execute the expression TIntermSequence* switchSequence = switchSequenceStack.back(); if (switchSequence->size() == 0) return expression; if (lastStatements == nullptr) { // emulate a break for error recovery lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); lastStatements->setOperator(EOpSequence); switchSequence->push_back(lastStatements); } TIntermAggregate* body = new TIntermAggregate(EOpSequence); body->getSequence() = *switchSequenceStack.back(); body->setLoc(loc); TIntermSwitch* switchNode = new TIntermSwitch(expression, body); switchNode->setLoc(loc); handleSwitchAttributes(loc, switchNode, attributes); return switchNode; } // Make a new symbol-table level that is made out of the members of a structure. // This should be done as an anonymous struct (name is "") so that the symbol table // finds the members with no explicit reference to a 'this' variable. void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators) { // member variables TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct); symbolTable.pushThis(thisVariable); // member functions for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) { // member should have a prefix matching currentTypePrefix.back() // but, symbol lookup within the class scope will just use the // unprefixed name. Hence, there are two: one fully prefixed and // one with no prefix. TFunction& member = *it->function->clone(); member.removePrefix(currentTypePrefix.back()); symbolTable.insert(member); } } // Track levels of class/struct/namespace nesting with a prefix string using // the type names separated by the scoping operator. E.g., two levels // would look like: // // outer::inner // // The string is empty when at normal global level. // void HlslParseContext::pushNamespace(const TString& typeName) { // make new type prefix TString newPrefix; if (currentTypePrefix.size() > 0) newPrefix = currentTypePrefix.back(); newPrefix.append(typeName); newPrefix.append(scopeMangler); currentTypePrefix.push_back(newPrefix); } // Opposite of pushNamespace(), see above void HlslParseContext::popNamespace() { currentTypePrefix.pop_back(); } // Use the class/struct nesting string to create a global name for // a member of a class/struct. void HlslParseContext::getFullNamespaceName(TString*& name) const { if (currentTypePrefix.size() == 0) return; TString* fullName = NewPoolTString(currentTypePrefix.back().c_str()); fullName->append(*name); name = fullName; } // Helper function to add the namespace scope mangling syntax to a string. void HlslParseContext::addScopeMangler(TString& name) { name.append(scopeMangler); } // Return true if this has uniform-interface like decorations. bool HlslParseContext::hasUniform(const TQualifier& qualifier) const { return qualifier.hasUniformLayout() || qualifier.layoutPushConstant; } // Potentially not the opposite of hasUniform(), as if some characteristic is // ever used for more than one thing (e.g., uniform or input), hasUniform() should // say it exists, but clearUniform() should leave it in place. void HlslParseContext::clearUniform(TQualifier& qualifier) { qualifier.clearUniformLayout(); qualifier.layoutPushConstant = false; } // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier. bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const { switch (qualifier.builtIn) { case EbvPosition: case EbvPointSize: return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment; case EbvClipDistance: case EbvCullDistance: return language != EShLangVertex && language != EShLangCompute; case EbvFragCoord: case EbvFace: case EbvHelperInvocation: case EbvLayer: case EbvPointCoord: case EbvSampleId: case EbvSampleMask: case EbvSamplePosition: case EbvViewportIndex: return language == EShLangFragment; case EbvGlobalInvocationId: case EbvLocalInvocationIndex: case EbvLocalInvocationId: case EbvNumWorkGroups: case EbvWorkGroupId: case EbvWorkGroupSize: return language == EShLangCompute; case EbvInvocationId: return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry; case EbvPatchVertices: return language == EShLangTessControl || language == EShLangTessEvaluation; case EbvInstanceId: case EbvInstanceIndex: case EbvVertexId: case EbvVertexIndex: return language == EShLangVertex; case EbvPrimitiveId: return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl; case EbvTessLevelInner: case EbvTessLevelOuter: return language == EShLangTessEvaluation; case EbvTessCoord: return language == EShLangTessEvaluation; default: return false; } } // Return true if there are decorations to preserve for input-like storage. bool HlslParseContext::hasInput(const TQualifier& qualifier) const { if (qualifier.hasAnyLocation()) return true; if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample)) return true; if (language == EShLangTessEvaluation && qualifier.patch) return true; if (isInputBuiltIn(qualifier)) return true; return false; } // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier. bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const { switch (qualifier.builtIn) { case EbvPosition: case EbvPointSize: case EbvClipVertex: case EbvClipDistance: case EbvCullDistance: return language != EShLangFragment && language != EShLangCompute; case EbvFragDepth: case EbvFragDepthGreater: case EbvFragDepthLesser: case EbvSampleMask: return language == EShLangFragment; case EbvLayer: case EbvViewportIndex: return language == EShLangGeometry || language == EShLangVertex; case EbvPrimitiveId: return language == EShLangGeometry; case EbvTessLevelInner: case EbvTessLevelOuter: return language == EShLangTessControl; default: return false; } } // Return true if there are decorations to preserve for output-like storage. bool HlslParseContext::hasOutput(const TQualifier& qualifier) const { if (qualifier.hasAnyLocation()) return true; if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb()) return true; if (language == EShLangTessControl && qualifier.patch) return true; if (language == EShLangGeometry && qualifier.hasStream()) return true; if (isOutputBuiltIn(qualifier)) return true; return false; } // Make the IO decorations etc. be appropriate only for an input interface. void HlslParseContext::correctInput(TQualifier& qualifier) { clearUniform(qualifier); if (language == EShLangVertex) qualifier.clearInterstage(); if (language != EShLangTessEvaluation) qualifier.patch = false; if (language != EShLangFragment) { qualifier.clearInterpolation(); qualifier.sample = false; } qualifier.clearStreamLayout(); qualifier.clearXfbLayout(); if (! isInputBuiltIn(qualifier)) qualifier.builtIn = EbvNone; } // Make the IO decorations etc. be appropriate only for an output interface. void HlslParseContext::correctOutput(TQualifier& qualifier) { clearUniform(qualifier); if (language == EShLangFragment) qualifier.clearInterstage(); if (language != EShLangGeometry) qualifier.clearStreamLayout(); if (language == EShLangFragment) qualifier.clearXfbLayout(); if (language != EShLangTessControl) qualifier.patch = false; switch (qualifier.builtIn) { case EbvFragDepth: intermediate.setDepthReplacing(); intermediate.setDepth(EldAny); break; case EbvFragDepthGreater: intermediate.setDepthReplacing(); intermediate.setDepth(EldGreater); qualifier.builtIn = EbvFragDepth; break; case EbvFragDepthLesser: intermediate.setDepthReplacing(); intermediate.setDepth(EldLess); qualifier.builtIn = EbvFragDepth; break; default: break; } if (! isOutputBuiltIn(qualifier)) qualifier.builtIn = EbvNone; } // Make the IO decorations etc. be appropriate only for uniform type interfaces. void HlslParseContext::correctUniform(TQualifier& qualifier) { if (qualifier.declaredBuiltIn == EbvNone) qualifier.declaredBuiltIn = qualifier.builtIn; qualifier.builtIn = EbvNone; qualifier.clearInterstage(); qualifier.clearInterstageLayout(); } // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface. void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier) { clearUniform(qualifier); correctUniform(qualifier); } // Set texture return type. Returns success (not all types are valid). bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc) { // Seed the output with an invalid index. We will set it to a valid one if we can. sampler.structReturnIndex = TSampler::noReturnStruct; // Arrays aren't supported. if (retType.isArray()) { error(loc, "Arrays not supported in texture template types", "", ""); return false; } // If return type is a vector, remember the vector size in the sampler, and return. if (retType.isVector() || retType.isScalar()) { sampler.vectorSize = retType.getVectorSize(); return true; } // If it wasn't a vector, it must be a struct meeting certain requirements. The requirements // are checked below: just check for struct-ness here. if (!retType.isStruct()) { error(loc, "Invalid texture template type", "", ""); return false; } // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading. if (sampler.isSubpass()) { error(loc, "Unimplemented: structure template type in subpass input", "", ""); return false; } TTypeList* members = retType.getWritableStruct(); // Check for too many or not enough structure members. if (members->size() > 4 || members->size() == 0) { error(loc, "Invalid member count in texture template structure", "", ""); return false; } // Error checking: We must have <= 4 total components, all of the same basic type. unsigned totalComponents = 0; for (unsigned m = 0; m < members->size(); ++m) { // Check for bad member types if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) { error(loc, "Invalid texture template struct member type", "", ""); return false; } const unsigned memberVectorSize = (*members)[m].type->getVectorSize(); totalComponents += memberVectorSize; // too many total member components if (totalComponents > 4) { error(loc, "Too many components in texture template structure type", "", ""); return false; } // All members must be of a common basic type if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) { error(loc, "Texture template structure members must same basic type", "", ""); return false; } } // If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make // a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large. for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) { if (textureReturnStruct[idx] == members) { sampler.structReturnIndex = idx; return true; } } // It wasn't found as an existing entry. See if we have room for a new one. if (textureReturnStruct.size() >= TSampler::structReturnSlots) { error(loc, "Texture template struct return slots exceeded", "", ""); return false; } // Insert it in the vector that tracks struct return types. sampler.structReturnIndex = unsigned(textureReturnStruct.size()); textureReturnStruct.push_back(members); // Success! return true; } // Return the sampler return type in retType. void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const { if (sampler.hasReturnStruct()) { assert(textureReturnStruct.size() >= sampler.structReturnIndex); // We land here if the texture return is a structure. TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex]; const TType resultType(blockStruct, ""); retType.shallowCopy(resultType); } else { // We land here if the texture return is a vector or scalar. const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize()); retType.shallowCopy(resultType); } } // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const { const auto it = builtInTessLinkageSymbols.find(biType); if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr return nullptr; return intermediate.addSymbol(*it->second->getAsVariable()); } // Find the patch constant function (issues error, returns nullptr if not found) const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc) { if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) { error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), ""); return nullptr; } const TString mangledName = patchConstantFunctionName + "("; // create list of PCF candidates TVector<const TFunction*> candidateList; bool builtIn; symbolTable.findFunctionNameList(mangledName, candidateList, builtIn); // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not // allow any disambiguation of overloads. if (candidateList.empty()) { error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), ""); return nullptr; } // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions, // HLSL picks the last one in shader source order. Since that isn't yet implemented here, error // out if there is more than one candidate. if (candidateList.size() > 1) { error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), ""); return nullptr; } return candidateList[0]; } // Finalization step: Add patch constant function invocation void HlslParseContext::addPatchConstantInvocation() { TSourceLoc loc; loc.init(); // If there's no patch constant function, or we're not a HS, do nothing. if (patchConstantFunctionName.empty() || language != EShLangTessControl) return; // Look for built-in variables in a function's parameter list. const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) { for (int p=0; p<function.getParamCount(); ++p) { TStorageQualifier storage = function[p].type->getQualifier().storage; if (storage == EvqConstReadOnly) // treated identically to input storage = EvqIn; if (function[p].getDeclaredBuiltIn() != EbvNone) builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage)); else builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage)); } }; // If we synthesize a built-in interface variable, we must add it to the linkage. const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) { if (name == nullptr) { error(loc, "unable to locate patch function parameter name", "", ""); return; } else { TVariable& variable = *new TVariable(name, type); if (! symbolTable.insert(variable)) { error(loc, "unable to declare patch constant function interface variable", name->c_str(), ""); return; } globalQualifierFix(loc, variable.getWritableType().getQualifier()); if (symbolNode != nullptr) *symbolNode = intermediate.addSymbol(variable); trackLinkage(variable); } }; const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) { const TType& type = *patchConstantFunction[param].type; const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn(); return type.isSizedArray() && biType == EbvOutputPatch; }; // We will perform these steps. Each is in a scoped block for separation: they could // become separate functions to make addPatchConstantInvocation shorter. // // 1. Union the interfaces, and create built-ins for anything present in the PCF and // declared as a built-in variable that isn't present in the entry point's signature. // // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main, // or the ones we created. Matching is based on built-in type. We may use synthesized // variables from (1) above. // // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them. // // 3. Create a return sequence: copy the return value (if any) from the PCF to a // (non-sanitized) output variable. In case this may involve multiple copies, such as for // an arrayed variable, a temporary copy of the PCF output is created to avoid multiple // indirections into a complex R-value coming from the call to the PCF. // // 4. Create a barrier. // // 5/5B. Call the PCF inside an if test for (invocation id == 0). TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc)); if (patchConstantFunctionPtr == nullptr) return; TFunction& patchConstantFunction = *patchConstantFunctionPtr; const int pcfParamCount = patchConstantFunction.getParamCount(); TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId); TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence(); int outPatchParam = -1; // -1 means there isn't one. // ================ Step 1A: Union Interfaces ================ // Our patch constant function. { std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins assert(entryPointFunction); assert(entryPointFunctionBody); findBuiltIns(patchConstantFunction, pcfBuiltIns); findBuiltIns(*entryPointFunction, epfBuiltIns); // Find the set of built-ins in the PCF that are not present in the entry point. std::set<tInterstageIoData> notInEntryPoint; notInEntryPoint = pcfBuiltIns; // std::set_difference not usable on unordered containers for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi) notInEntryPoint.erase(*bi); // Now we'll add those to the entry and to the linkage. for (int p=0; p<pcfParamCount; ++p) { const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn(); TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage; // Track whether there is an output patch param if (isOutputPatch(patchConstantFunction, p)) { if (outPatchParam >= 0) { // Presently we only support one per ctrl pt input. error(loc, "unimplemented: multiple output patches in patch constant function", "", ""); return; } outPatchParam = p; } if (biType != EbvNone) { TType* paramType = patchConstantFunction[p].type->clone(); if (storage == EvqConstReadOnly) // treated identically to input storage = EvqIn; // Presently, the only non-built-in we support is InputPatch, which is treated as // a pseudo-built-in. if (biType == EbvInputPatch) { builtInTessLinkageSymbols[biType] = inputPatch; } else if (biType == EbvOutputPatch) { // Nothing... } else { // Use the original declaration type for the linkage paramType->getQualifier().builtIn = biType; if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1) addToLinkage(*paramType, patchConstantFunction[p].name, nullptr); } } } // If we didn't find it because the shader made one, add our own. if (invocationIdSym == nullptr) { TType invocationIdType(EbtUint, EvqIn, 1); TString* invocationIdName = NewPoolTString("InvocationId"); invocationIdType.getQualifier().builtIn = EbvInvocationId; addToLinkage(invocationIdType, invocationIdName, &invocationIdSym); } assert(invocationIdSym); } TIntermTyped* pcfArguments = nullptr; TVariable* perCtrlPtVar = nullptr; // ================ Step 1B: Argument synthesis ================ // Create pcfArguments for synthesis of patchconstantfunction invocation { for (int p=0; p<pcfParamCount; ++p) { TIntermTyped* inputArg = nullptr; if (p == outPatchParam) { if (perCtrlPtVar == nullptr) { perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name, *patchConstantFunction[outPatchParam].type); perCtrlPtVar->getWritableType().getQualifier().makeTemporary(); } inputArg = intermediate.addSymbol(*perCtrlPtVar, loc); } else { // find which built-in it is const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn(); if (biType == EbvInputPatch && inputPatch == nullptr) { error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", ""); return; } inputArg = findTessLinkageSymbol(biType); if (inputArg == nullptr) { error(loc, "unable to find patch constant function built-in variable", "", ""); return; } } if (pcfParamCount == 1) pcfArguments = inputArg; else pcfArguments = intermediate.growAggregate(pcfArguments, inputArg); } } // ================ Step 2: Synthesize call to PCF ================ TIntermAggregate* pcfCallSequence = nullptr; TIntermTyped* pcfCall = nullptr; { // Create a function call to the patchconstantfunction if (pcfArguments) addInputArgumentConversions(patchConstantFunction, pcfArguments); // Synthetic call. pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc); pcfCall->getAsAggregate()->setUserDefined(); pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName()); intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(), patchConstantFunction.getMangledName()); if (pcfCall->getAsAggregate()) { TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList(); for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) { TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage; qualifierList.push_back(qual); } pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator()); } } // ================ Step 2B: Per Control Point synthesis ================ // If there is per control point data, we must either emulate that with multiple // invocations of the entry point to build up an array, or (TODO:) use a yet // unavailable extension to look across the SIMD lanes. This is the former // as a placeholder for the latter. if (outPatchParam >= 0) { // We must introduce a local temp variable of the type wanted by the PCF input. const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize(); if (entryPointFunction->getType().getBasicType() == EbtVoid) { error(loc, "entry point must return a value for use with patch constant function", "", ""); return; } // Create calls to wrapped main to fill in the array. We will substitute fixed values // of invocation ID when calling the wrapped main. // This is the type of the each member of the per ctrl point array. const TType derefType(perCtrlPtVar->getType(), 0); for (int cpt = 0; cpt < arraySize; ++cpt) { // TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab // for this function. const TString origName = entryPointFunction->getName().substr(1); TFunction callee(&origName, TType(EbtVoid)); TIntermTyped* callingArgs = nullptr; for (int i = 0; i < entryPointFunction->getParamCount(); i++) { TParameter& param = (*entryPointFunction)[i]; TType& paramType = *param.type; if (paramType.getQualifier().isParamOutput()) { error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", ""); return; } if (paramType.getQualifier().isParamInput()) { TIntermTyped* arg = nullptr; if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) { // substitute invocation ID with the array element ID arg = intermediate.addConstantUnion(cpt, loc); } else { TVariable* argVar = makeInternalVariable(*param.name, *param.type); argVar->getWritableType().getQualifier().makeTemporary(); arg = intermediate.addSymbol(*argVar); } handleFunctionArgument(&callee, callingArgs, arg); } } // Call and assign to per ctrl point variable currentCaller = intermediate.getEntryPointMangledName().c_str(); TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs); TIntermTyped* index = intermediate.addConstantUnion(cpt, loc); TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc); TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc); element->setType(derefType); element->setLoc(loc); pcfCallSequence = intermediate.growAggregate(pcfCallSequence, handleAssign(loc, EOpAssign, element, callReturn)); } } // ================ Step 3: Create return Sequence ================ // Return sequence: copy PCF result to a temporary, then to shader output variable. if (pcfCall->getBasicType() != EbtVoid) { const TType* retType = &patchConstantFunction.getType(); // return type from the PCF TType outType; // output type that goes with the return type. outType.shallowCopy(*retType); // substitute the output type const auto newLists = ioTypeMap.find(retType->getStruct()); if (newLists != ioTypeMap.end()) outType.setStruct(newLists->second.output); // Substitute the top level type's built-in type if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone) outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType(); outType.getQualifier().patch = true; // make it a per-patch variable TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType); pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut; if (pcfOutput->getType().containsBuiltIn()) split(*pcfOutput); assignToInterface(*pcfOutput); TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc); // The call to the PCF is a complex R-value: we want to store it in a temp to avoid // repeated calls to the PCF: TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType); pcfCallResult->getWritableType().getQualifier().makeTemporary(); TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc); TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall); TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym, intermediate.addSymbol(*pcfCallResult, loc)); pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign); pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut); } else { pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall); } // ================ Step 4: Barrier ================ TIntermTyped* barrier = new TIntermAggregate(EOpBarrier); barrier->setLoc(loc); barrier->setType(TType(EbtVoid)); epBodySeq.insert(epBodySeq.end(), barrier); // ================ Step 5: Test on invocation ID ================ TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true); TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool)); // ================ Step 5B: Create if statement on Invocation ID == 0 ================ intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc); TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr); invocationIdTest->setLoc(loc); // add our test sequence before the return. epBodySeq.insert(epBodySeq.end(), invocationIdTest); } // Finalization step: remove unused buffer blocks from linkage (we don't know until the // shader is entirely compiled). // Preserve order of remaining symbols. void HlslParseContext::removeUnusedStructBufferCounters() { const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(), [this](const TSymbol* sym) { const auto sbcIt = structBufferCounter.find(sym->getName()); return sbcIt != structBufferCounter.end() && !sbcIt->second; }); linkageSymbols.erase(endIt, linkageSymbols.end()); } // Finalization step: patch texture shadow modes to match samplers they were combined with void HlslParseContext::fixTextureShadowModes() { for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) { TSampler& sampler = (*symbol)->getWritableType().getSampler(); if (sampler.isTexture()) { const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId()); if (shadowMode != textureShadowVariant.end()) { if (shadowMode->second->overloaded()) // Texture needs legalization if it's been seen with both shadow and non-shadow modes. intermediate.setNeedsLegalization(); sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId()); } } } } // Finalization step: patch append methods to use proper stream output, which isn't known until // main is parsed, which could happen after the append method is parsed. void HlslParseContext::finalizeAppendMethods() { TSourceLoc loc; loc.init(); // Nothing to do: bypass test for valid stream output. if (gsAppends.empty()) return; if (gsStreamOutput == nullptr) { error(loc, "unable to find output symbol for Append()", "", ""); return; } // Patch append sequences, now that we know the stream output symbol. for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) { append->node->getSequence()[0] = handleAssign(append->loc, EOpAssign, intermediate.addSymbol(*gsStreamOutput, append->loc), append->node->getSequence()[0]->getAsTyped()); } } // post-processing void HlslParseContext::finish() { // Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so // cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful. if (! mipsOperatorMipArg.empty()) { error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", ""); } removeUnusedStructBufferCounters(); addPatchConstantInvocation(); fixTextureShadowModes(); finalizeAppendMethods(); // Communicate out (esp. for command line) that we formed AST that will make // illegal AST SPIR-V and it needs transforms to legalize it. if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization)) infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize"; TParseContextBase::finish(); } } // end namespace glslang