// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include "Common/Atomic.h" #include "Common/ChunkFile.h" #include "Common/Common.h" #include "Common/MathUtil.h" #include "Common/Thread.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/CoreTiming.h" #include "Core/HW/GPFifo.h" #include "Core/HW/Memmap.h" #include "Core/HW/MMIO.h" #include "Core/HW/ProcessorInterface.h" #include "Core/HW/SystemTimers.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" namespace CommandProcessor { int et_UpdateInterrupts; // TODO(ector): Warn on bbox read/write // STATE_TO_SAVE SCPFifoStruct fifo; UCPStatusReg m_CPStatusReg; UCPCtrlReg m_CPCtrlReg; UCPClearReg m_CPClearReg; u16 m_bboxleft; u16 m_bboxtop; u16 m_bboxright; u16 m_bboxbottom; u16 m_tokenReg; static bool bProcessFifoToLoWatermark = false; static bool bProcessFifoAllDistance = false; volatile bool isPossibleWaitingSetDrawDone = false; volatile bool isHiWatermarkActive = false; volatile bool isLoWatermarkActive = false; volatile bool interruptSet= false; volatile bool interruptWaiting= false; volatile bool interruptTokenWaiting = false; volatile bool interruptFinishWaiting = false; volatile u32 VITicks = CommandProcessor::m_cpClockOrigin; bool IsOnThread() { return SConfig::GetInstance().m_LocalCoreStartupParameter.bCPUThread; } void UpdateInterrupts_Wrapper(u64 userdata, int cyclesLate) { UpdateInterrupts(userdata); } void DoState(PointerWrap &p) { p.DoPOD(m_CPStatusReg); p.DoPOD(m_CPCtrlReg); p.DoPOD(m_CPClearReg); p.Do(m_bboxleft); p.Do(m_bboxtop); p.Do(m_bboxright); p.Do(m_bboxbottom); p.Do(m_tokenReg); p.Do(fifo); p.Do(bProcessFifoToLoWatermark); p.Do(bProcessFifoAllDistance); p.Do(isHiWatermarkActive); p.Do(isLoWatermarkActive); p.Do(isPossibleWaitingSetDrawDone); p.Do(interruptSet); p.Do(interruptWaiting); p.Do(interruptTokenWaiting); p.Do(interruptFinishWaiting); } inline void WriteLow (volatile u32& _reg, u16 lowbits) {Common::AtomicStore(_reg,(_reg & 0xFFFF0000) | lowbits);} inline void WriteHigh(volatile u32& _reg, u16 highbits) {Common::AtomicStore(_reg,(_reg & 0x0000FFFF) | ((u32)highbits << 16));} inline u16 ReadLow (u32 _reg) {return (u16)(_reg & 0xFFFF);} inline u16 ReadHigh (u32 _reg) {return (u16)(_reg >> 16);} void Init() { m_CPStatusReg.Hex = 0; m_CPStatusReg.CommandIdle = 1; m_CPStatusReg.ReadIdle = 1; m_CPCtrlReg.Hex = 0; m_CPClearReg.Hex = 0; m_bboxleft = 0; m_bboxtop = 0; m_bboxright = 640; m_bboxbottom = 480; m_tokenReg = 0; memset(&fifo,0,sizeof(fifo)); fifo.CPCmdIdle = 1; fifo.CPReadIdle = 1; fifo.bFF_Breakpoint = 0; fifo.bFF_HiWatermark = 0; fifo.bFF_HiWatermarkInt = 0; fifo.bFF_LoWatermark = 0; fifo.bFF_LoWatermarkInt = 0; interruptSet = false; interruptWaiting = false; interruptFinishWaiting = false; interruptTokenWaiting = false; bProcessFifoToLoWatermark = false; bProcessFifoAllDistance = false; isPossibleWaitingSetDrawDone = false; isHiWatermarkActive = false; isLoWatermarkActive = false; et_UpdateInterrupts = CoreTiming::RegisterEvent("CPInterrupt", UpdateInterrupts_Wrapper); } void RegisterMMIO(MMIO::Mapping* mmio, u32 base) { struct { u32 addr; u16* ptr; bool readonly; bool writes_align_to_32_bytes; } directly_mapped_vars[] = { { FIFO_TOKEN_REGISTER, &m_tokenReg }, // Bounding box registers are read only. { FIFO_BOUNDING_BOX_LEFT, &m_bboxleft, true }, { FIFO_BOUNDING_BOX_RIGHT, &m_bboxright, true }, { FIFO_BOUNDING_BOX_TOP, &m_bboxtop, true }, { FIFO_BOUNDING_BOX_BOTTOM, &m_bboxbottom, true }, // Some FIFO addresses need to be aligned on 32 bytes on write - only // the high part can be written directly without a mask. { FIFO_BASE_LO, MMIO::Utils::LowPart(&fifo.CPBase), false, true }, { FIFO_BASE_HI, MMIO::Utils::HighPart(&fifo.CPBase) }, { FIFO_END_LO, MMIO::Utils::LowPart(&fifo.CPEnd), false, true }, { FIFO_END_HI, MMIO::Utils::HighPart(&fifo.CPEnd) }, { FIFO_HI_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPHiWatermark) }, { FIFO_HI_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPHiWatermark) }, { FIFO_LO_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPLoWatermark) }, { FIFO_LO_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPLoWatermark) }, // FIFO_RW_DISTANCE has some complex read code different for // single/dual core. { FIFO_WRITE_POINTER_LO, MMIO::Utils::LowPart(&fifo.CPWritePointer), false, true }, { FIFO_WRITE_POINTER_HI, MMIO::Utils::HighPart(&fifo.CPWritePointer) }, // FIFO_READ_POINTER has different code for single/dual core. { FIFO_BP_LO, MMIO::Utils::LowPart(&fifo.CPBreakpoint), false, true }, { FIFO_BP_HI, MMIO::Utils::HighPart(&fifo.CPBreakpoint) }, }; for (auto& mapped_var : directly_mapped_vars) { u16 wmask = mapped_var.writes_align_to_32_bytes ? 0xFFE0 : 0xFFFF; mmio->Register(base | mapped_var.addr, MMIO::DirectRead<u16>(mapped_var.ptr), mapped_var.readonly ? MMIO::InvalidWrite<u16>() : MMIO::DirectWrite<u16>(mapped_var.ptr, wmask) ); } // Timing and metrics MMIOs are stubbed with fixed values. struct { u32 addr; u16 value; } metrics_mmios[] = { { XF_RASBUSY_L, 0 }, { XF_RASBUSY_H, 0 }, { XF_CLKS_L, 0 }, { XF_CLKS_H, 0 }, { XF_WAIT_IN_L, 0 }, { XF_WAIT_IN_H, 0 }, { XF_WAIT_OUT_L, 0 }, { XF_WAIT_OUT_H, 0 }, { VCACHE_METRIC_CHECK_L, 0 }, { VCACHE_METRIC_CHECK_H, 0 }, { VCACHE_METRIC_MISS_L, 0 }, { VCACHE_METRIC_MISS_H, 0 }, { VCACHE_METRIC_STALL_L, 0 }, { VCACHE_METRIC_STALL_H, 0 }, { CLKS_PER_VTX_OUT, 4 }, }; for (auto& metrics_mmio : metrics_mmios) { mmio->Register(base | metrics_mmio.addr, MMIO::Constant<u16>(metrics_mmio.value), MMIO::InvalidWrite<u16>() ); } mmio->Register(base | STATUS_REGISTER, MMIO::ComplexRead<u16>([](u32) { SetCpStatusRegister(); return m_CPStatusReg.Hex; }), MMIO::InvalidWrite<u16>() ); mmio->Register(base | CTRL_REGISTER, MMIO::DirectRead<u16>(&m_CPCtrlReg.Hex), MMIO::ComplexWrite<u16>([](u32, u16 val) { UCPCtrlReg tmp(val); m_CPCtrlReg.Hex = tmp.Hex; SetCpControlRegister(); if (!IsOnThread()) RunGpu(); }) ); mmio->Register(base | CLEAR_REGISTER, MMIO::DirectRead<u16>(&m_CPClearReg.Hex), MMIO::ComplexWrite<u16>([](u32, u16 val) { UCPClearReg tmp(val); m_CPClearReg.Hex = tmp.Hex; SetCpClearRegister(); if (!IsOnThread()) RunGpu(); }) ); mmio->Register(base | PERF_SELECT, MMIO::InvalidRead<u16>(), MMIO::Nop<u16>() ); // Some MMIOs have different handlers for single core vs. dual core mode. mmio->Register(base | FIFO_RW_DISTANCE_LO, IsOnThread() ? MMIO::ComplexRead<u16>([](u32) { if (fifo.CPWritePointer >= fifo.SafeCPReadPointer) return ReadLow(fifo.CPWritePointer - fifo.SafeCPReadPointer); else return ReadLow(fifo.CPEnd - fifo.SafeCPReadPointer + fifo.CPWritePointer - fifo.CPBase + 32); }) : MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance)), MMIO::DirectWrite<u16>(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance), 0xFFE0) ); mmio->Register(base | FIFO_RW_DISTANCE_HI, IsOnThread() ? MMIO::ComplexRead<u16>([](u32) { if (fifo.CPWritePointer >= fifo.SafeCPReadPointer) return ReadHigh(fifo.CPWritePointer - fifo.SafeCPReadPointer); else return ReadHigh(fifo.CPEnd - fifo.SafeCPReadPointer + fifo.CPWritePointer - fifo.CPBase + 32); }) : MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.CPReadWriteDistance)), MMIO::ComplexWrite<u16>([](u32, u16 val) { WriteHigh(fifo.CPReadWriteDistance, val); if (fifo.CPReadWriteDistance == 0) { GPFifo::ResetGatherPipe(); ResetVideoBuffer(); } else { ResetVideoBuffer(); } if (!IsOnThread()) RunGpu(); }) ); mmio->Register(base | FIFO_READ_POINTER_LO, IsOnThread() ? MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.SafeCPReadPointer)) : MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.CPReadPointer)), MMIO::DirectWrite<u16>(MMIO::Utils::LowPart(&fifo.CPReadPointer), 0xFFE0) ); mmio->Register(base | FIFO_READ_POINTER_HI, IsOnThread() ? MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.SafeCPReadPointer)) : MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.CPReadPointer)), IsOnThread() ? MMIO::ComplexWrite<u16>([](u32, u16 val) { WriteHigh(fifo.CPReadPointer, val); fifo.SafeCPReadPointer = fifo.CPReadPointer; }) : MMIO::DirectWrite<u16>(MMIO::Utils::HighPart(&fifo.CPReadPointer)) ); } void STACKALIGN GatherPipeBursted() { ProcessFifoEvents(); // if we aren't linked, we don't care about gather pipe data if (!m_CPCtrlReg.GPLinkEnable) { if (!IsOnThread()) { RunGpu(); } else { // In multibuffer mode is not allowed write in the same FIFO attached to the GPU. // Fix Pokemon XD in DC mode. if ((ProcessorInterface::Fifo_CPUEnd == fifo.CPEnd) && (ProcessorInterface::Fifo_CPUBase == fifo.CPBase) && fifo.CPReadWriteDistance > 0) { ProcessFifoAllDistance(); } } return; } if (IsOnThread()) SetCpStatus(true); // update the fifo pointer if (fifo.CPWritePointer >= fifo.CPEnd) fifo.CPWritePointer = fifo.CPBase; else fifo.CPWritePointer += GATHER_PIPE_SIZE; Common::AtomicAdd(fifo.CPReadWriteDistance, GATHER_PIPE_SIZE); if (!IsOnThread()) RunGpu(); _assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance <= fifo.CPEnd - fifo.CPBase, "FIFO is overflowed by GatherPipe !\nCPU thread is too fast!"); // check if we are in sync _assert_msg_(COMMANDPROCESSOR, fifo.CPWritePointer == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync"); _assert_msg_(COMMANDPROCESSOR, fifo.CPBase == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync"); _assert_msg_(COMMANDPROCESSOR, fifo.CPEnd == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync"); } void UpdateInterrupts(u64 userdata) { if (userdata) { interruptSet = true; INFO_LOG(COMMANDPROCESSOR,"Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true); } else { interruptSet = false; INFO_LOG(COMMANDPROCESSOR,"Interrupt cleared"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false); } interruptWaiting = false; } void UpdateInterruptsFromVideoBackend(u64 userdata) { CoreTiming::ScheduleEvent_Threadsafe(0, et_UpdateInterrupts, userdata); } // This is called by the ProcessorInterface when PI_FIFO_RESET is written to. void AbortFrame() { } void SetCpStatus(bool isCPUThread) { // overflow & underflow check fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark); fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark); // breakpoint if (!isCPUThread) { if (fifo.bFF_BPEnable) { if (fifo.CPBreakpoint == fifo.CPReadPointer) { if (!fifo.bFF_Breakpoint) { INFO_LOG(COMMANDPROCESSOR, "Hit breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = true; } } else { if (fifo.bFF_Breakpoint) INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = false; } } else { if (fifo.bFF_Breakpoint) INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = false; } } bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt; bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt; bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt; bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; isHiWatermarkActive = ovfInt && m_CPCtrlReg.GPReadEnable; isLoWatermarkActive = undfInt && m_CPCtrlReg.GPReadEnable; if (interrupt != interruptSet && !interruptWaiting) { u64 userdata = interrupt?1:0; if (IsOnThread()) { if (!interrupt || bpInt || undfInt || ovfInt) { if (!isCPUThread) { // GPU thread: interruptWaiting = true; CommandProcessor::UpdateInterruptsFromVideoBackend(userdata); } else { // CPU thread: interruptSet = interrupt; INFO_LOG(COMMANDPROCESSOR,"Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, interrupt); } } } else { CommandProcessor::UpdateInterrupts(userdata); } } } void ProcessFifoToLoWatermark() { if (IsOnThread()) { while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance > fifo.CPLoWatermark && !AtBreakpoint()) Common::YieldCPU(); } bProcessFifoToLoWatermark = false; } void ProcessFifoAllDistance() { if (IsOnThread()) { while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint()) Common::YieldCPU(); } bProcessFifoAllDistance = false; } void ProcessFifoEvents() { if (IsOnThread() && (interruptWaiting || interruptFinishWaiting || interruptTokenWaiting)) CoreTiming::ProcessFifoWaitEvents(); } void Shutdown() { } void SetCpStatusRegister() { // Here always there is one fifo attached to the GPU m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint; m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance || AtBreakpoint() || (fifo.CPReadPointer == fifo.CPWritePointer); m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance || AtBreakpoint() || !fifo.bFF_GPReadEnable; m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark; m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark; INFO_LOG(COMMANDPROCESSOR,"\t Read from STATUS_REGISTER : %04x", m_CPStatusReg.Hex); DEBUG_LOG(COMMANDPROCESSOR, "(r) status: iBP %s | fReadIdle %s | fCmdIdle %s | iOvF %s | iUndF %s" , m_CPStatusReg.Breakpoint ? "ON" : "OFF" , m_CPStatusReg.ReadIdle ? "ON" : "OFF" , m_CPStatusReg.CommandIdle ? "ON" : "OFF" , m_CPStatusReg.OverflowHiWatermark ? "ON" : "OFF" , m_CPStatusReg.UnderflowLoWatermark ? "ON" : "OFF" ); } void SetCpControlRegister() { // If the new fifo is being attached, force an exception check // This fixes the hang while booting Eternal Darkness if (!fifo.bFF_GPReadEnable && m_CPCtrlReg.GPReadEnable && !m_CPCtrlReg.BPEnable) { CoreTiming::ForceExceptionCheck(0); } fifo.bFF_BPInt = m_CPCtrlReg.BPInt; fifo.bFF_BPEnable = m_CPCtrlReg.BPEnable; fifo.bFF_HiWatermarkInt = m_CPCtrlReg.FifoOverflowIntEnable; fifo.bFF_LoWatermarkInt = m_CPCtrlReg.FifoUnderflowIntEnable; fifo.bFF_GPLinkEnable = m_CPCtrlReg.GPLinkEnable; if (m_CPCtrlReg.GPReadEnable && m_CPCtrlReg.GPLinkEnable) { ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer; ProcessorInterface::Fifo_CPUBase = fifo.CPBase; ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd; } if (fifo.bFF_GPReadEnable && !m_CPCtrlReg.GPReadEnable) { fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable; while (fifo.isGpuReadingData) Common::YieldCPU(); } else { fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable; } DEBUG_LOG(COMMANDPROCESSOR, "\t GPREAD %s | BP %s | Int %s | OvF %s | UndF %s | LINK %s" , fifo.bFF_GPReadEnable ? "ON" : "OFF" , fifo.bFF_BPEnable ? "ON" : "OFF" , fifo.bFF_BPInt ? "ON" : "OFF" , m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF" , m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF" , m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF" ); } // NOTE: The implementation of this function should be correct, but we intentionally aren't using it at the moment. // We don't emulate proper GP timing anyway at the moment, so this code would just slow down emulation. void SetCpClearRegister() { // if (IsOnThread()) // { // if (!m_CPClearReg.ClearFifoUnderflow && m_CPClearReg.ClearFifoOverflow) // bProcessFifoToLoWatermark = true; // } } void Update() { while (VITicks > m_cpClockOrigin && fifo.isGpuReadingData && IsOnThread()) Common::YieldCPU(); if (fifo.isGpuReadingData) Common::AtomicAdd(VITicks, SystemTimers::GetTicksPerSecond() / 10000); } } // end of namespace CommandProcessor