// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include #include "../../../Core/InputCommon/Src/SDL.h" // Core #include "../../../Core/InputCommon/Src/XInput.h" #include "Common.h" // Common #include "MathUtil.h" #include "StringUtil.h" // for ArrayToString() #include "IniFile.h" #include "pluginspecs_wiimote.h" #include "EmuDefinitions.h" // Local #include "main.h" #include "wiimote_hid.h" #include "EmuSubroutines.h" #include "EmuMain.h" #include "Encryption.h" // for extension encryption #include "Config.h" // for g_Config namespace WiiMoteEmu { //****************************************************************************** // Accelerometer functions //****************************************************************************** /* // Test the calculations void TiltTest(u8 x, u8 y, u8 z) { int Roll, Pitch, RollAdj, PitchAdj; PitchAccelerometerToDegree(x, y, z, Roll, Pitch, RollAdj, PitchAdj); std::string From = StringFromFormat("From: X:%i Y:%i Z:%i Roll:%s Pitch:%s", x, y, z, (Roll >= 0) ? StringFromFormat(" %03i", Roll).c_str() : StringFromFormat("%04i", Roll).c_str(), (Pitch >= 0) ? StringFromFormat(" %03i", Pitch).c_str() : StringFromFormat("%04i", Pitch).c_str()); float _Roll = (float)Roll, _Pitch = (float)Pitch; PitchDegreeToAccelerometer(_Roll, _Pitch, x, y, z); std::string To = StringFromFormat("%s\nTo: X:%i Y:%i Z:%i Roll:%s Pitch:%s", From.c_str(), x, y, z, (_Roll >= 0) ? StringFromFormat(" %03i", (int)_Roll).c_str() : StringFromFormat("%04i", (int)_Roll).c_str(), (_Pitch >= 0) ? StringFromFormat(" %03i", (int)_Pitch).c_str() : StringFromFormat("%04i", (int)_Pitch).c_str()); NOTICE_LOG(CONSOLE, "\n%s", To.c_str()); } */ /* Angles adjustment for the upside down state when both roll and pitch is used. When the absolute values of the angles go over 90 the Wiimote is upside down and these adjustments are needed. */ void AdjustAngles(int &Roll, int &Pitch) { int OldPitch = Pitch; if (abs(Roll) > 90) { if (Pitch >= 0) Pitch = 180 - Pitch; // 15 to 165 else Pitch = -180 - Pitch; // -15 to -165 } if (abs(OldPitch) > 90) { if (Roll >= 0) Roll = 180 - Roll; // 15 to 165 else Roll = -180 - Roll; // -15 to -165 } } // Angles to accelerometer values void PitchDegreeToAccelerometer(int Roll, int Pitch, int &_x, int &_y, int &_z) { // Direct mapping for swing, from analog stick to accelerometer if (g_Config.Tilt.Range.Roll == 0 && g_Config.Tilt.Range.Pitch == 0) { if (!g_Config.bUpright) { _x -= Roll; _z -= Pitch; } else // Upright wiimote { _x -= Roll; _y += Pitch; } return; } // We need radiands for the math functions float _Roll = InputCommon::Deg2Rad((float)Roll); float _Pitch = InputCommon::Deg2Rad((float)Pitch); // We need decimal values float x, y, z; // In these cases we can use the simple and accurate formula if(g_Config.Tilt.Range.Pitch == 0) { x = sin(_Roll); y = 0.0f; z = cos(_Roll); } else if (g_Config.Tilt.Range.Roll == 0) { x = 0.0f; y = sin(_Pitch); z = cos(_Pitch); } else { // ==================================================== /* This seems to always produce the exact same combination of x, y, z and Roll and Pitch that the real Wiimote produce. There is an unlimited amount of x, y, z combinations for any combination of Roll and Pitch. But if we select a Z from the smallest of the absolute value of cos(Roll) and cos (Pitch) we get the right values. */ // --------- if (abs(cos(_Roll)) < abs(cos(_Pitch))) z = cos(_Roll); else z = cos(_Pitch); /* I got these from reversing the calculation in PitchAccelerometerToDegree() in a math program. */ float x_num = 2 * tanf(0.5f * _Roll) * z; float x_den = pow2f(tanf(0.5f * _Roll)) - 1; x = - (x_num / x_den); float y_num = 2 * tanf(0.5f * _Pitch) * z; float y_den = pow2f(tanf(0.5f * _Pitch)) - 1; y = - (y_num / y_den); } // Multiply with neutral value and its g float xg = g_wm.cal_g.x; float yg = g_wm.cal_g.y; float zg = g_wm.cal_g.z; int ix = g_wm.cal_zero.x + (int)(xg * x); int iy = g_wm.cal_zero.y + (int)(yg * y); int iz = g_wm.cal_zero.z + (int)(zg * z); if (!g_Config.bUpright) { if(g_Config.Tilt.Range.Roll != 0) _x = ix; if(g_Config.Tilt.Range.Pitch != 0) _y = iy; _z = iz; } else // Upright wiimote { if(g_Config.Tilt.Range.Roll != 0) _x = ix; if(g_Config.Tilt.Range.Pitch != 0) _z = iy; _y = 0xFF - iz; } } // Accelerometer to roll and pitch angles float AccelerometerToG(float Current, float Neutral, float G) { float _G = (Current - Neutral) / G; return _G; } void PitchAccelerometerToDegree(u8 _x, u8 _y, u8 _z, int &_Roll, int &_Pitch, int &_RollAdj, int &_PitchAdj) { // Definitions float Roll = 0, Pitch = 0; // Calculate how many g we are from the neutral float x = AccelerometerToG((float)_x, (float)g_wm.cal_zero.x, (float)g_wm.cal_g.x); float y = AccelerometerToG((float)_y, (float)g_wm.cal_zero.y, (float)g_wm.cal_g.y); float z = AccelerometerToG((float)_z, (float)g_wm.cal_zero.z, (float)g_wm.cal_g.z); if (!g_Config.bUpright) { // If it is over 1g then it is probably accelerating and may not reliable //if (abs(accel->x - ac->cal_zero.x) <= ac->cal_g.x) { // Calculate the degree Roll = InputCommon::Rad2Deg(atan2(x, z)); } //if (abs(_y - g_wm.cal_zero.y) <= g_wm.cal_g.y) { // Calculate the degree Pitch = InputCommon::Rad2Deg(atan2(y, z)); } } else { //if (abs(accel->z - ac->cal_zero.z) <= ac->cal_g.x) { // Calculate the degree Roll = InputCommon::Rad2Deg(atan2(z, -y)); } //if (abs(_x - g_wm.cal_zero.x) <= g_wm.cal_g.x) { // Calculate the degree Pitch = InputCommon::Rad2Deg(atan2(-x, -y)); } } _Roll = (int)Roll; _Pitch = (int)Pitch; /* Don't allow forces bigger than 1g */ if (x < -1.0) x = -1.0; else if (x > 1.0) x = 1.0; if (y < -1.0) y = -1.0; else if (y > 1.0) y = 1.0; if (z < -1.0) z = -1.0; else if (z > 1.0) z = 1.0; if (!g_Config.bUpright) { Roll = InputCommon::Rad2Deg(atan2(x, z)); Pitch = InputCommon::Rad2Deg(atan2(y, z)); } else { Roll = InputCommon::Rad2Deg(atan2(z, -y)); Pitch = InputCommon::Rad2Deg(atan2(-x, -y)); } _RollAdj = (int)Roll; _PitchAdj = (int)Pitch; } //****************************************************************************** // IR data functions //****************************************************************************** // Calculate dot positions from the basic 10 byte IR data void IRData2DotsBasic(u8 *Data) { struct SDot* Dot = g_Wiimote_kbd.IR.Dot; Dot[0].Rx = 1023 - (Data[0] | ((Data[2] & 0x30) << 4)); Dot[0].Ry = Data[1] | ((Data[2] & 0xc0) << 2); Dot[1].Rx = 1023 - (Data[3] | ((Data[2] & 0x03) << 8)); Dot[1].Ry = Data[4] | ((Data[2] & 0x0c) << 6); Dot[2].Rx = 1023 - (Data[5] | ((Data[7] & 0x30) << 4)); Dot[2].Ry = Data[6] | ((Data[7] & 0xc0) << 2); Dot[3].Rx = 1023 - (Data[8] | ((Data[7] & 0x03) << 8)); Dot[3].Ry = Data[9] | ((Data[7] & 0x0c) << 6); /* set each IR spot to visible if spot is in range */ for (int i = 0; i < 4; ++i) { if (Dot[i].Ry == 1023) { Dot[i].Visible = 0; } else { Dot[i].Visible = 1; Dot[i].Size = 0; /* since we don't know the size, set it as 0 */ } // For now we let our virtual resolution be the same as the default one Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry; } // Calculate the other values ReorderIRDots(); IRData2Distance(); } // Calculate dot positions from the extented 12 byte IR data void IRData2Dots(u8 *Data) { struct SDot* Dot = g_Wiimote_kbd.IR.Dot; for (int i = 0; i < 4; ++i) { //Console::Print("Rx: %i\n", Dot[i].Rx); Dot[i].Rx = 1023 - (Data[3*i] | ((Data[(3*i)+2] & 0x30) << 4)); Dot[i].Ry = Data[(3*i)+1] | ((Data[(3*i)+2] & 0xc0) << 2); Dot[i].Size = Data[(3*i)+2] & 0x0f; /* if in range set to visible */ if (Dot[i].Ry == 1023) Dot[i].Visible = false; else Dot[i].Visible = true; //Console::Print("Rx: %i\n", Dot[i].Rx); // For now we let our virtual resolution be the same as the default one Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry; } // Calculate the other values ReorderIRDots(); IRData2Distance(); } // Reorder the IR dots according to their x-axis value void ReorderIRDots() { // Create a shortcut SDot* Dot = g_Wiimote_kbd.IR.Dot; // Variables int i, j, order; // Reset the dot ordering to zero for (i = 0; i < 4; ++i) Dot[i].Order = 0; // is this just a weird filter+sort? for (order = 1; order < 5; ++order) { i = 0; // for (; !Dot[i].Visible || Dot[i].Order; ++i) if (i > 4) return; // for (j = 0; j < 4; ++j) { if (Dot[j].Visible && !Dot[j].Order && (Dot[j].X < Dot[i].X)) i = j; } Dot[i].Order = order; } } // Calculate dot positions from the extented 12 byte IR data void IRData2Distance() { // Create a shortcut struct SDot* Dot = g_Wiimote_kbd.IR.Dot; // Make these ones global int i1, i2; for (i1 = 0; i1 < 4; ++i1) if (Dot[i1].Visible) break; // Only one dot was visible, we can not calculate the distance if (i1 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; } // Look at the next dot for (i2 = i1 + 1; i2 < 4; ++i2) if (Dot[i2].Visible) break; // Only one dot was visible, we can not calculate the distance if (i2 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; } /* For the emulated Wiimote the y distance is always zero so then the distance is the simple distance between the x dots, i.e. the sensor bar width */ int xd = Dot[i2].X - Dot[i1].X; int yd = Dot[i2].Y - Dot[i1].Y; // Save the distance g_Wiimote_kbd.IR.Distance = (int)sqrt((float)(xd*xd) + (float)(yd*yd)); } //****************************************************************************** // Classic Controller functions //****************************************************************************** std::string CCData2Values(u8 *Data) { return StringFromFormat( "Tl:%03i Tr:%03i Lx:%03i Ly:%03i Rx:%03i Ry:%03i", (((Data[2] & 0x60) >> 2) | ((Data[3] & 0xe0) >> 5)), (Data[3] & 0x1f), (Data[0] & 0x3f), (Data[1] & 0x3f), ((Data[0] & 0xc0) >> 3) | ((Data[1] & 0xc0) >> 5) | ((Data[2] & 0x80) >> 7), (Data[2] & 0x1f)); } } // WiiMoteEmu