// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Core/Core.h" #include "VideoBackends/Vulkan/BoundingBox.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/PerfQuery.h" #include "VideoBackends/Vulkan/Renderer.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/SwapChain.h" #include "VideoBackends/Vulkan/VKPipeline.h" #include "VideoBackends/Vulkan/VKShader.h" #include "VideoBackends/Vulkan/VKTexture.h" #include "VideoBackends/Vulkan/VertexFormat.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace Vulkan { Renderer::Renderer(std::unique_ptr swap_chain, float backbuffer_scale) : ::Renderer(swap_chain ? static_cast(swap_chain->GetWidth()) : 1, swap_chain ? static_cast(swap_chain->GetHeight()) : 0, backbuffer_scale, swap_chain ? swap_chain->GetTextureFormat() : AbstractTextureFormat::Undefined), m_swap_chain(std::move(swap_chain)) { UpdateActiveConfig(); for (size_t i = 0; i < m_sampler_states.size(); i++) m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex; } Renderer::~Renderer() = default; bool Renderer::IsHeadless() const { return m_swap_chain == nullptr; } bool Renderer::Initialize() { if (!::Renderer::Initialize()) return false; m_bounding_box = std::make_unique(); if (!m_bounding_box->Initialize()) { PanicAlert("Failed to initialize bounding box."); return false; } // Various initialization routines will have executed commands on the command buffer. // Execute what we have done before beginning the first frame. ExecuteCommandBuffer(true, false); return true; } void Renderer::Shutdown() { ::Renderer::Shutdown(); m_swap_chain.reset(); } std::unique_ptr Renderer::CreateTexture(const TextureConfig& config) { return VKTexture::Create(config); } std::unique_ptr Renderer::CreateStagingTexture(StagingTextureType type, const TextureConfig& config) { return VKStagingTexture::Create(type, config); } std::unique_ptr Renderer::CreateShaderFromSource(ShaderStage stage, const char* source, size_t length) { return VKShader::CreateFromSource(stage, source, length); } std::unique_ptr Renderer::CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) { return VKShader::CreateFromBinary(stage, data, length); } std::unique_ptr Renderer::CreateNativeVertexFormat(const PortableVertexDeclaration& vtx_decl) { return std::make_unique(vtx_decl); } std::unique_ptr Renderer::CreatePipeline(const AbstractPipelineConfig& config) { return VKPipeline::Create(config); } std::unique_ptr Renderer::CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment) { return VKFramebuffer::Create(static_cast(color_attachment), static_cast(depth_attachment)); } void Renderer::SetPipeline(const AbstractPipeline* pipeline) { StateTracker::GetInstance()->SetPipeline(static_cast(pipeline)); } u16 Renderer::BBoxRead(int index) { s32 value = m_bounding_box->Get(static_cast(index)); // Here we get the min/max value of the truncated position of the upscaled framebuffer. // So we have to correct them to the unscaled EFB sizes. if (index < 2) { // left/right value = value * EFB_WIDTH / m_target_width; } else { // up/down value = value * EFB_HEIGHT / m_target_height; } // fix max values to describe the outer border if (index & 1) value++; return static_cast(value); } void Renderer::BBoxWrite(int index, u16 value) { s32 scaled_value = static_cast(value); // fix max values to describe the outer border if (index & 1) scaled_value--; // scale to internal resolution if (index < 2) { // left/right scaled_value = scaled_value * m_target_width / EFB_WIDTH; } else { // up/down scaled_value = scaled_value * m_target_height / EFB_HEIGHT; } m_bounding_box->Set(static_cast(index), scaled_value); } void Renderer::BBoxFlush() { m_bounding_box->Flush(); m_bounding_box->Invalidate(); } void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable, bool z_enable, u32 color, u32 z) { g_framebuffer_manager->FlushEFBPokes(); g_framebuffer_manager->FlagPeekCacheAsOutOfDate(); // Native -> EFB coordinates TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc); // Size we pass this size to vkBeginRenderPass, it has to be clamped to the framebuffer // dimensions. The other backends just silently ignore this case. target_rc.ClampUL(0, 0, m_target_width, m_target_height); VkRect2D target_vk_rc = { {target_rc.left, target_rc.top}, {static_cast(target_rc.GetWidth()), static_cast(target_rc.GetHeight())}}; // Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha // channel to 0xFF. This hopefully allows us to use the fast path in most cases. if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 || bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 || bpmem.zcontrol.pixel_format == PEControl::Z24) { // Force alpha writes, and clear the alpha channel. This is different to the other backends, // where the existing values of the alpha channel are preserved. alpha_enable = true; color &= 0x00FFFFFF; } // Convert RGBA8 -> floating-point values. VkClearValue clear_color_value = {}; VkClearValue clear_depth_value = {}; clear_color_value.color.float32[0] = static_cast((color >> 16) & 0xFF) / 255.0f; clear_color_value.color.float32[1] = static_cast((color >> 8) & 0xFF) / 255.0f; clear_color_value.color.float32[2] = static_cast((color >> 0) & 0xFF) / 255.0f; clear_color_value.color.float32[3] = static_cast((color >> 24) & 0xFF) / 255.0f; clear_depth_value.depthStencil.depth = static_cast(z & 0xFFFFFF) / 16777216.0f; if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange) clear_depth_value.depthStencil.depth = 1.0f - clear_depth_value.depthStencil.depth; // If we're not in a render pass (start of the frame), we can use a clear render pass // to discard the data, rather than loading and then clearing. bool use_clear_attachments = (color_enable && alpha_enable) || z_enable; bool use_clear_render_pass = !StateTracker::GetInstance()->InRenderPass() && color_enable && alpha_enable && z_enable; // The NVIDIA Vulkan driver causes the GPU to lock up, or throw exceptions if MSAA is enabled, // a non-full clear rect is specified, and a clear loadop or vkCmdClearAttachments is used. if (g_ActiveConfig.iMultisamples > 1 && DriverDetails::HasBug(DriverDetails::BUG_BROKEN_MSAA_CLEAR)) { use_clear_render_pass = false; use_clear_attachments = false; } // This path cannot be used if the driver implementation doesn't guarantee pixels with no drawn // geometry in "this" renderpass won't be cleared if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_CLEAR_LOADOP_RENDERPASS)) use_clear_render_pass = false; // Fastest path: Use a render pass to clear the buffers. if (use_clear_render_pass) { const std::array clear_values = {{clear_color_value, clear_depth_value}}; StateTracker::GetInstance()->BeginClearRenderPass(target_vk_rc, clear_values.data(), static_cast(clear_values.size())); return; } // Fast path: Use vkCmdClearAttachments to clear the buffers within a render path // We can't use this when preserving alpha but clearing color. if (use_clear_attachments) { VkClearAttachment clear_attachments[2]; uint32_t num_clear_attachments = 0; if (color_enable && alpha_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_color_value; num_clear_attachments++; color_enable = false; alpha_enable = false; } if (z_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_depth_value; num_clear_attachments++; z_enable = false; } if (num_clear_attachments > 0) { VkClearRect vk_rect = {target_vk_rc, 0, g_framebuffer_manager->GetEFBLayers()}; if (!StateTracker::GetInstance()->IsWithinRenderArea( target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { StateTracker::GetInstance()->EndClearRenderPass(); } StateTracker::GetInstance()->BeginRenderPass(); vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments, clear_attachments, 1, &vk_rect); } } // Anything left over for the slow path? if (!color_enable && !alpha_enable && !z_enable) return; g_framebuffer_manager->ClearEFB(rc, color_enable, alpha_enable, z_enable, color, z); } void Renderer::Flush() { ExecuteCommandBuffer(true, false); } void Renderer::WaitForGPUIdle() { ExecuteCommandBuffer(false, true); } void Renderer::BindBackbuffer(const ClearColor& clear_color) { StateTracker::GetInstance()->EndRenderPass(); // Handle host window resizes. CheckForSurfaceChange(); CheckForSurfaceResize(); VkResult res = g_command_buffer_mgr->CheckLastPresentFail() ? VK_ERROR_OUT_OF_DATE_KHR : m_swap_chain->AcquireNextImage(); if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR) { // Execute cmdbuffer before resizing, as the last frame could still be presenting. ExecuteCommandBuffer(false, true); m_swap_chain->ResizeSwapChain(); res = m_swap_chain->AcquireNextImage(); } if (res != VK_SUCCESS) PanicAlert("Failed to grab image from swap chain"); // Transition from undefined (or present src, but it can be substituted) to // color attachment ready for writing. These transitions must occur outside // a render pass, unless the render pass declares a self-dependency. m_swap_chain->GetCurrentTexture()->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED); m_swap_chain->GetCurrentTexture()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); SetAndClearFramebuffer(m_swap_chain->GetCurrentFramebuffer(), ClearColor{{0.0f, 0.0f, 0.0f, 1.0f}}); } void Renderer::PresentBackbuffer() { // End drawing to backbuffer StateTracker::GetInstance()->EndRenderPass(); PerfQuery::GetInstance()->FlushQueries(); // Transition the backbuffer to PRESENT_SRC to ensure all commands drawing // to it have finished before present. m_swap_chain->GetCurrentTexture()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_PRESENT_SRC_KHR); // Submit the current command buffer, signaling rendering finished semaphore when it's done // Because this final command buffer is rendering to the swap chain, we need to wait for // the available semaphore to be signaled before executing the buffer. This final submission // can happen off-thread in the background while we're preparing the next frame. g_command_buffer_mgr->SubmitCommandBuffer(true, m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex()); // New cmdbuffer, so invalidate state. StateTracker::GetInstance()->InvalidateCachedState(); } void Renderer::ExecuteCommandBuffer(bool submit_off_thread, bool wait_for_completion) { StateTracker::GetInstance()->EndRenderPass(); PerfQuery::GetInstance()->FlushQueries(); // If we're waiting for completion, don't bother waking the worker thread. const VkFence pending_fence = g_command_buffer_mgr->GetCurrentCommandBufferFence(); g_command_buffer_mgr->SubmitCommandBuffer(submit_off_thread && wait_for_completion); if (wait_for_completion) g_command_buffer_mgr->WaitForFence(pending_fence); StateTracker::GetInstance()->InvalidateCachedState(); } void Renderer::CheckForSurfaceChange() { if (!m_surface_changed.TestAndClear() || !m_swap_chain) return; // Submit the current draws up until rendering the XFB. ExecuteCommandBuffer(false, true); // Clear the present failed flag, since we don't want to resize after recreating. g_command_buffer_mgr->CheckLastPresentFail(); // Recreate the surface. If this fails we're in trouble. if (!m_swap_chain->RecreateSurface(m_new_surface_handle)) PanicAlert("Failed to recreate Vulkan surface. Cannot continue."); m_new_surface_handle = nullptr; // Handle case where the dimensions are now different. OnSwapChainResized(); } void Renderer::CheckForSurfaceResize() { if (!m_surface_resized.TestAndClear()) return; // If we don't have a surface, how can we resize the swap chain? // CheckForSurfaceChange should handle this case. if (!m_swap_chain) { WARN_LOG(VIDEO, "Surface resize event received without active surface, ignoring"); return; } // Wait for the GPU to catch up since we're going to destroy the swap chain. ExecuteCommandBuffer(false, true); // Clear the present failed flag, since we don't want to resize after recreating. g_command_buffer_mgr->CheckLastPresentFail(); // Resize the swap chain. m_swap_chain->RecreateSwapChain(); OnSwapChainResized(); } void Renderer::OnConfigChanged(u32 bits) { if (bits & CONFIG_CHANGE_BIT_HOST_CONFIG) g_object_cache->ReloadPipelineCache(); // For vsync, we need to change the present mode, which means recreating the swap chain. if (m_swap_chain && bits & CONFIG_CHANGE_BIT_VSYNC) { ExecuteCommandBuffer(false, true); m_swap_chain->SetVSync(g_ActiveConfig.bVSyncActive); } // For quad-buffered stereo we need to change the layer count, so recreate the swap chain. if (m_swap_chain && bits & CONFIG_CHANGE_BIT_STEREO_MODE) { ExecuteCommandBuffer(false, true); m_swap_chain->RecreateSwapChain(); } // Wipe sampler cache if force texture filtering or anisotropy changes. if (bits & (CONFIG_CHANGE_BIT_ANISOTROPY | CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING)) { ExecuteCommandBuffer(false, true); ResetSamplerStates(); } } void Renderer::OnSwapChainResized() { m_backbuffer_width = m_swap_chain->GetWidth(); m_backbuffer_height = m_swap_chain->GetHeight(); } void Renderer::BindFramebuffer(VKFramebuffer* fb) { StateTracker::GetInstance()->EndRenderPass(); // Shouldn't be bound as a texture. if (fb->GetColorAttachment()) { StateTracker::GetInstance()->UnbindTexture( static_cast(fb->GetColorAttachment())->GetView()); } if (fb->GetDepthAttachment()) { StateTracker::GetInstance()->UnbindTexture( static_cast(fb->GetDepthAttachment())->GetView()); } fb->TransitionForRender(); StateTracker::GetInstance()->SetFramebuffer(fb); m_current_framebuffer = fb; } void Renderer::SetFramebuffer(AbstractFramebuffer* framebuffer) { if (m_current_framebuffer == framebuffer) return; VKFramebuffer* vkfb = static_cast(framebuffer); BindFramebuffer(vkfb); } void Renderer::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer) { if (m_current_framebuffer == framebuffer) return; VKFramebuffer* vkfb = static_cast(framebuffer); BindFramebuffer(vkfb); // If we're discarding, begin the discard pass, then switch to a load pass. // This way if the command buffer is flushed, we don't start another discard pass. StateTracker::GetInstance()->BeginDiscardRenderPass(); } void Renderer::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer, const ClearColor& color_value, float depth_value) { VKFramebuffer* vkfb = static_cast(framebuffer); BindFramebuffer(vkfb); std::array clear_values; u32 num_clear_values = 0; if (vkfb->GetColorFormat() != AbstractTextureFormat::Undefined) { std::memcpy(clear_values[num_clear_values].color.float32, color_value.data(), sizeof(clear_values[num_clear_values].color.float32)); num_clear_values++; } if (vkfb->GetDepthFormat() != AbstractTextureFormat::Undefined) { clear_values[num_clear_values].depthStencil.depth = depth_value; clear_values[num_clear_values].depthStencil.stencil = 0; num_clear_values++; } StateTracker::GetInstance()->BeginClearRenderPass(vkfb->GetRect(), clear_values.data(), num_clear_values); } void Renderer::SetTexture(u32 index, const AbstractTexture* texture) { // Texture should always be in SHADER_READ_ONLY layout prior to use. // This is so we don't need to transition during render passes. const VKTexture* tex = static_cast(texture); if (tex) { if (tex->GetLayout() != VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { if (StateTracker::GetInstance()->InRenderPass()) { WARN_LOG(VIDEO, "Transitioning image in render pass in Renderer::SetTexture()"); StateTracker::GetInstance()->EndRenderPass(); } tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); } StateTracker::GetInstance()->SetTexture(index, tex->GetView()); } else { StateTracker::GetInstance()->SetTexture(0, VK_NULL_HANDLE); } } void Renderer::SetSamplerState(u32 index, const SamplerState& state) { // Skip lookup if the state hasn't changed. if (m_sampler_states[index].hex == state.hex) return; // Look up new state and replace in state tracker. VkSampler sampler = g_object_cache->GetSampler(state); if (sampler == VK_NULL_HANDLE) { ERROR_LOG(VIDEO, "Failed to create sampler"); sampler = g_object_cache->GetPointSampler(); } StateTracker::GetInstance()->SetSampler(index, sampler); m_sampler_states[index].hex = state.hex; } void Renderer::SetComputeImageTexture(AbstractTexture* texture, bool read, bool write) { VKTexture* vk_texture = static_cast(texture); if (vk_texture) { StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->SetImageTexture(vk_texture->GetView()); vk_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), read ? (write ? VKTexture::ComputeImageLayout::ReadWrite : VKTexture::ComputeImageLayout::ReadOnly) : VKTexture::ComputeImageLayout::WriteOnly); } else { StateTracker::GetInstance()->SetImageTexture(VK_NULL_HANDLE); } } void Renderer::UnbindTexture(const AbstractTexture* texture) { StateTracker::GetInstance()->UnbindTexture(static_cast(texture)->GetView()); } void Renderer::ResetSamplerStates() { // Ensure none of the sampler objects are in use. // This assumes that none of the samplers are in use on the command list currently being recorded. g_command_buffer_mgr->WaitForGPUIdle(); // Invalidate all sampler states, next draw will re-initialize them. for (u32 i = 0; i < m_sampler_states.size(); i++) { m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex; StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler()); } // Invalidate all sampler objects (some will be unused now). g_object_cache->ClearSamplerCache(); } void Renderer::SetScissorRect(const MathUtil::Rectangle& rc) { VkRect2D scissor = {{rc.left, rc.top}, {static_cast(rc.GetWidth()), static_cast(rc.GetHeight())}}; StateTracker::GetInstance()->SetScissor(scissor); } void Renderer::SetViewport(float x, float y, float width, float height, float near_depth, float far_depth) { VkViewport viewport = {x, y, width, height, near_depth, far_depth}; StateTracker::GetInstance()->SetViewport(viewport); } void Renderer::Draw(u32 base_vertex, u32 num_vertices) { if (!StateTracker::GetInstance()->Bind()) return; vkCmdDraw(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_vertices, 1, base_vertex, 0); } void Renderer::DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex) { if (!StateTracker::GetInstance()->Bind()) return; vkCmdDrawIndexed(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_indices, 1, base_index, base_vertex, 0); } void Renderer::DispatchComputeShader(const AbstractShader* shader, u32 groups_x, u32 groups_y, u32 groups_z) { StateTracker::GetInstance()->SetComputeShader(static_cast(shader)); if (StateTracker::GetInstance()->BindCompute()) vkCmdDispatch(g_command_buffer_mgr->GetCurrentCommandBuffer(), groups_x, groups_y, groups_z); } } // namespace Vulkan