// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/CommandProcessor.h" #include #include #include #include "Common/Assert.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Flag.h" #include "Common/Logging/Log.h" #include "Core/ConfigManager.h" #include "Core/CoreTiming.h" #include "Core/HW/GPFifo.h" #include "Core/HW/MMIO.h" #include "Core/HW/ProcessorInterface.h" #include "Core/PowerPC/PowerPC.h" #include "Core/System.h" #include "VideoCommon/Fifo.h" namespace CommandProcessor { static bool IsOnThread(Core::System& system) { return system.IsDualCoreMode(); } static void UpdateInterrupts_Wrapper(Core::System& system, u64 userdata, s64 cyclesLate) { system.GetCommandProcessor().UpdateInterrupts(system, userdata); } void SCPFifoStruct::Init() { CPBase = 0; CPEnd = 0; CPHiWatermark = 0; CPLoWatermark = 0; CPReadWriteDistance = 0; CPWritePointer = 0; CPReadPointer = 0; CPBreakpoint = 0; SafeCPReadPointer = 0; bFF_GPLinkEnable = 0; bFF_GPReadEnable = 0; bFF_BPEnable = 0; bFF_BPInt = 0; bFF_Breakpoint.store(0, std::memory_order_relaxed); bFF_HiWatermark.store(0, std::memory_order_relaxed); bFF_HiWatermarkInt.store(0, std::memory_order_relaxed); bFF_LoWatermark.store(0, std::memory_order_relaxed); bFF_LoWatermarkInt.store(0, std::memory_order_relaxed); } void SCPFifoStruct::DoState(PointerWrap& p) { p.Do(CPBase); p.Do(CPEnd); p.Do(CPHiWatermark); p.Do(CPLoWatermark); p.Do(CPReadWriteDistance); p.Do(CPWritePointer); p.Do(CPReadPointer); p.Do(CPBreakpoint); p.Do(SafeCPReadPointer); p.Do(bFF_GPLinkEnable); p.Do(bFF_GPReadEnable); p.Do(bFF_BPEnable); p.Do(bFF_BPInt); p.Do(bFF_Breakpoint); p.Do(bFF_LoWatermarkInt); p.Do(bFF_HiWatermarkInt); p.Do(bFF_LoWatermark); p.Do(bFF_HiWatermark); } void CommandProcessorManager::DoState(PointerWrap& p) { p.Do(m_cp_status_reg); p.Do(m_cp_ctrl_reg); p.Do(m_cp_clear_reg); p.Do(m_bbox_left); p.Do(m_bbox_top); p.Do(m_bbox_right); p.Do(m_bbox_bottom); p.Do(m_token_reg); m_fifo.DoState(p); p.Do(m_interrupt_set); p.Do(m_interrupt_waiting); } static inline void WriteHigh(std::atomic& reg, u16 highbits) { reg.store((reg.load(std::memory_order_relaxed) & 0x0000FFFF) | (static_cast(highbits) << 16), std::memory_order_relaxed); } void CommandProcessorManager::Init(Core::System& system) { m_cp_status_reg.Hex = 0; m_cp_status_reg.CommandIdle = 1; m_cp_status_reg.ReadIdle = 1; m_cp_ctrl_reg.Hex = 0; m_cp_clear_reg.Hex = 0; m_bbox_left = 0; m_bbox_top = 0; m_bbox_right = 640; m_bbox_bottom = 480; m_token_reg = 0; m_fifo.Init(); m_is_fifo_error_seen = false; m_interrupt_set.Clear(); m_interrupt_waiting.Clear(); m_event_type_update_interrupts = system.GetCoreTiming().RegisterEvent("CPInterrupt", UpdateInterrupts_Wrapper); } u32 GetPhysicalAddressMask() { // Physical addresses in CP seem to ignore some of the upper bits (depending on platform) // This can be observed in CP MMIO registers by setting to 0xffffffff and then reading back. return SConfig::GetInstance().bWii ? 0x1fffffff : 0x03ffffff; } void CommandProcessorManager::RegisterMMIO(Core::System& system, MMIO::Mapping* mmio, u32 base) { constexpr u16 WMASK_NONE = 0x0000; constexpr u16 WMASK_ALL = 0xffff; constexpr u16 WMASK_LO_ALIGN_32BIT = 0xffe0; const u16 WMASK_HI_RESTRICT = GetPhysicalAddressMask() >> 16; auto& fifo = m_fifo; struct { u32 addr; u16* ptr; bool readonly; // FIFO mmio regs in the range [cc000020-cc00003e] have certain bits that always read as 0 // For _LO registers in this range, only bits 0xffe0 can be set // For _HI registers in this range, only bits 0x03ff can be set on GCN and 0x1fff on Wii u16 wmask; } directly_mapped_vars[] = { {FIFO_TOKEN_REGISTER, &m_token_reg, false, WMASK_ALL}, // Bounding box registers are read only. {FIFO_BOUNDING_BOX_LEFT, &m_bbox_left, true, WMASK_NONE}, {FIFO_BOUNDING_BOX_RIGHT, &m_bbox_right, true, WMASK_NONE}, {FIFO_BOUNDING_BOX_TOP, &m_bbox_top, true, WMASK_NONE}, {FIFO_BOUNDING_BOX_BOTTOM, &m_bbox_bottom, true, WMASK_NONE}, {FIFO_BASE_LO, MMIO::Utils::LowPart(&fifo.CPBase), false, WMASK_LO_ALIGN_32BIT}, {FIFO_BASE_HI, MMIO::Utils::HighPart(&fifo.CPBase), false, WMASK_HI_RESTRICT}, {FIFO_END_LO, MMIO::Utils::LowPart(&fifo.CPEnd), false, WMASK_LO_ALIGN_32BIT}, {FIFO_END_HI, MMIO::Utils::HighPart(&fifo.CPEnd), false, WMASK_HI_RESTRICT}, {FIFO_HI_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPHiWatermark), false, WMASK_LO_ALIGN_32BIT}, {FIFO_HI_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPHiWatermark), false, WMASK_HI_RESTRICT}, {FIFO_LO_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPLoWatermark), false, WMASK_LO_ALIGN_32BIT}, {FIFO_LO_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPLoWatermark), false, WMASK_HI_RESTRICT}, // FIFO_RW_DISTANCE has some complex read code different for // single/dual core. {FIFO_WRITE_POINTER_LO, MMIO::Utils::LowPart(&fifo.CPWritePointer), false, WMASK_LO_ALIGN_32BIT}, {FIFO_WRITE_POINTER_HI, MMIO::Utils::HighPart(&fifo.CPWritePointer), false, WMASK_HI_RESTRICT}, // FIFO_READ_POINTER has different code for single/dual core. {FIFO_BP_LO, MMIO::Utils::LowPart(&fifo.CPBreakpoint), false, WMASK_LO_ALIGN_32BIT}, {FIFO_BP_HI, MMIO::Utils::HighPart(&fifo.CPBreakpoint), false, WMASK_HI_RESTRICT}, }; for (auto& mapped_var : directly_mapped_vars) { mmio->Register(base | mapped_var.addr, MMIO::DirectRead(mapped_var.ptr), mapped_var.readonly ? MMIO::InvalidWrite() : MMIO::DirectWrite(mapped_var.ptr, mapped_var.wmask)); } // Timing and metrics MMIOs are stubbed with fixed values. struct { u32 addr; u16 value; } metrics_mmios[] = { {XF_RASBUSY_L, 0}, {XF_RASBUSY_H, 0}, {XF_CLKS_L, 0}, {XF_CLKS_H, 0}, {XF_WAIT_IN_L, 0}, {XF_WAIT_IN_H, 0}, {XF_WAIT_OUT_L, 0}, {XF_WAIT_OUT_H, 0}, {VCACHE_METRIC_CHECK_L, 0}, {VCACHE_METRIC_CHECK_H, 0}, {VCACHE_METRIC_MISS_L, 0}, {VCACHE_METRIC_MISS_H, 0}, {VCACHE_METRIC_STALL_L, 0}, {VCACHE_METRIC_STALL_H, 0}, {CLKS_PER_VTX_OUT, 4}, }; for (auto& metrics_mmio : metrics_mmios) { mmio->Register(base | metrics_mmio.addr, MMIO::Constant(metrics_mmio.value), MMIO::InvalidWrite()); } mmio->Register(base | STATUS_REGISTER, MMIO::ComplexRead([](Core::System& system, u32) { auto& cp = system.GetCommandProcessor(); Fifo::SyncGPUForRegisterAccess(); cp.SetCpStatusRegister(); return cp.m_cp_status_reg.Hex; }), MMIO::InvalidWrite()); mmio->Register(base | CTRL_REGISTER, MMIO::DirectRead(&m_cp_ctrl_reg.Hex), MMIO::ComplexWrite([](Core::System& system, u32, u16 val) { auto& cp = system.GetCommandProcessor(); UCPCtrlReg tmp(val); cp.m_cp_ctrl_reg.Hex = tmp.Hex; cp.SetCpControlRegister(); Fifo::RunGpu(); })); mmio->Register(base | CLEAR_REGISTER, MMIO::DirectRead(&m_cp_clear_reg.Hex), MMIO::ComplexWrite([](Core::System& system, u32, u16 val) { auto& cp = system.GetCommandProcessor(); UCPClearReg tmp(val); cp.m_cp_clear_reg.Hex = tmp.Hex; cp.SetCpClearRegister(); Fifo::RunGpu(); })); mmio->Register(base | PERF_SELECT, MMIO::InvalidRead(), MMIO::Nop()); // Some MMIOs have different handlers for single core vs. dual core mode. const bool is_on_thread = IsOnThread(system); MMIO::ReadHandlingMethod* fifo_rw_distance_lo_r; if (is_on_thread) { fifo_rw_distance_lo_r = MMIO::ComplexRead([](Core::System& system, u32) { const auto& fifo = system.GetCommandProcessor().GetFifo(); if (fifo.CPWritePointer.load(std::memory_order_relaxed) >= fifo.SafeCPReadPointer.load(std::memory_order_relaxed)) { return static_cast(fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed)); } else { return static_cast(fifo.CPEnd.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed) + fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.CPBase.load(std::memory_order_relaxed) + 32); } }); } else { fifo_rw_distance_lo_r = MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance)); } mmio->Register(base | FIFO_RW_DISTANCE_LO, fifo_rw_distance_lo_r, MMIO::DirectWrite(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance), WMASK_LO_ALIGN_32BIT)); MMIO::ReadHandlingMethod* fifo_rw_distance_hi_r; if (is_on_thread) { fifo_rw_distance_hi_r = MMIO::ComplexRead([](Core::System& system, u32) { const auto& fifo = system.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); if (fifo.CPWritePointer.load(std::memory_order_relaxed) >= fifo.SafeCPReadPointer.load(std::memory_order_relaxed)) { return (fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed)) >> 16; } else { return (fifo.CPEnd.load(std::memory_order_relaxed) - fifo.SafeCPReadPointer.load(std::memory_order_relaxed) + fifo.CPWritePointer.load(std::memory_order_relaxed) - fifo.CPBase.load(std::memory_order_relaxed) + 32) >> 16; } }); } else { fifo_rw_distance_hi_r = MMIO::ComplexRead([](Core::System& system, u32) { const auto& fifo = system.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); return fifo.CPReadWriteDistance.load(std::memory_order_relaxed) >> 16; }); } mmio->Register(base | FIFO_RW_DISTANCE_HI, fifo_rw_distance_hi_r, MMIO::ComplexWrite([WMASK_HI_RESTRICT](Core::System& system, u32, u16 val) { auto& fifo = system.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); WriteHigh(fifo.CPReadWriteDistance, val & WMASK_HI_RESTRICT); Fifo::RunGpu(); })); mmio->Register( base | FIFO_READ_POINTER_LO, is_on_thread ? MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.SafeCPReadPointer)) : MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPReadPointer)), MMIO::DirectWrite(MMIO::Utils::LowPart(&fifo.CPReadPointer), WMASK_LO_ALIGN_32BIT)); MMIO::ReadHandlingMethod* fifo_read_hi_r; MMIO::WriteHandlingMethod* fifo_read_hi_w; if (is_on_thread) { fifo_read_hi_r = MMIO::ComplexRead([](Core::System& system, u32) { auto& fifo = system.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); return fifo.SafeCPReadPointer.load(std::memory_order_relaxed) >> 16; }); fifo_read_hi_w = MMIO::ComplexWrite([WMASK_HI_RESTRICT](Core::System& sys, u32, u16 val) { auto& fifo = sys.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); WriteHigh(fifo.CPReadPointer, val & WMASK_HI_RESTRICT); fifo.SafeCPReadPointer.store(fifo.CPReadPointer.load(std::memory_order_relaxed), std::memory_order_relaxed); }); } else { fifo_read_hi_r = MMIO::ComplexRead([](Core::System& system, u32) { const auto& fifo = system.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); return fifo.CPReadPointer.load(std::memory_order_relaxed) >> 16; }); fifo_read_hi_w = MMIO::ComplexWrite([WMASK_HI_RESTRICT](Core::System& sys, u32, u16 val) { auto& fifo = sys.GetCommandProcessor().GetFifo(); Fifo::SyncGPUForRegisterAccess(); WriteHigh(fifo.CPReadPointer, val & WMASK_HI_RESTRICT); }); } mmio->Register(base | FIFO_READ_POINTER_HI, fifo_read_hi_r, fifo_read_hi_w); } void CommandProcessorManager::GatherPipeBursted(Core::System& system) { auto& fifo = m_fifo; SetCPStatusFromCPU(system); // if we aren't linked, we don't care about gather pipe data if (!m_cp_ctrl_reg.GPLinkEnable) { if (IsOnThread(system) && !Fifo::UseDeterministicGPUThread()) { // In multibuffer mode is not allowed write in the same FIFO attached to the GPU. // Fix Pokemon XD in DC mode. if ((ProcessorInterface::Fifo_CPUEnd == fifo.CPEnd.load(std::memory_order_relaxed)) && (ProcessorInterface::Fifo_CPUBase == fifo.CPBase.load(std::memory_order_relaxed)) && fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > 0) { Fifo::FlushGpu(); } } Fifo::RunGpu(); return; } // update the fifo pointer if (fifo.CPWritePointer.load(std::memory_order_relaxed) == fifo.CPEnd.load(std::memory_order_relaxed)) { fifo.CPWritePointer.store(fifo.CPBase, std::memory_order_relaxed); } else { fifo.CPWritePointer.fetch_add(GPFifo::GATHER_PIPE_SIZE, std::memory_order_relaxed); } if (m_cp_ctrl_reg.GPReadEnable && m_cp_ctrl_reg.GPLinkEnable) { ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer.load(std::memory_order_relaxed); ProcessorInterface::Fifo_CPUBase = fifo.CPBase.load(std::memory_order_relaxed); ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd.load(std::memory_order_relaxed); } // If the game is running close to overflowing, make the exception checking more frequent. if (fifo.bFF_HiWatermark.load(std::memory_order_relaxed) != 0) system.GetCoreTiming().ForceExceptionCheck(0); fifo.CPReadWriteDistance.fetch_add(GPFifo::GATHER_PIPE_SIZE, std::memory_order_seq_cst); Fifo::RunGpu(); ASSERT_MSG(COMMANDPROCESSOR, fifo.CPReadWriteDistance.load(std::memory_order_relaxed) <= fifo.CPEnd.load(std::memory_order_relaxed) - fifo.CPBase.load(std::memory_order_relaxed), "FIFO is overflowed by GatherPipe !\nCPU thread is too fast!"); // check if we are in sync ASSERT_MSG(COMMANDPROCESSOR, fifo.CPWritePointer.load(std::memory_order_relaxed) == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync"); ASSERT_MSG(COMMANDPROCESSOR, fifo.CPBase.load(std::memory_order_relaxed) == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync"); ASSERT_MSG(COMMANDPROCESSOR, fifo.CPEnd.load(std::memory_order_relaxed) == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync"); } void CommandProcessorManager::UpdateInterrupts(Core::System& system, u64 userdata) { if (userdata) { m_interrupt_set.Set(); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true); } else { m_interrupt_set.Clear(); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt cleared"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false); } system.GetCoreTiming().ForceExceptionCheck(0); m_interrupt_waiting.Clear(); Fifo::RunGpu(); } void CommandProcessorManager::UpdateInterruptsFromVideoBackend(Core::System& system, u64 userdata) { if (!Fifo::UseDeterministicGPUThread()) { system.GetCoreTiming().ScheduleEvent(0, m_event_type_update_interrupts, userdata, CoreTiming::FromThread::NON_CPU); } } bool CommandProcessorManager::IsInterruptWaiting() const { return m_interrupt_waiting.IsSet(); } void CommandProcessorManager::SetCPStatusFromGPU(Core::System& system) { auto& fifo = m_fifo; // breakpoint const bool breakpoint = fifo.bFF_Breakpoint.load(std::memory_order_relaxed); if (fifo.bFF_BPEnable.load(std::memory_order_relaxed) != 0) { if (fifo.CPBreakpoint.load(std::memory_order_relaxed) == fifo.CPReadPointer.load(std::memory_order_relaxed)) { if (!breakpoint) { DEBUG_LOG_FMT(COMMANDPROCESSOR, "Hit breakpoint at {}", fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.bFF_Breakpoint.store(1, std::memory_order_relaxed); } } else { if (breakpoint) { DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}", fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.bFF_Breakpoint.store(0, std::memory_order_relaxed); } } } else { if (breakpoint) { DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}", fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.bFF_Breakpoint = false; } } // overflow & underflow check fifo.bFF_HiWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark), std::memory_order_relaxed); fifo.bFF_LoWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark), std::memory_order_relaxed); bool bpInt = fifo.bFF_Breakpoint.load(std::memory_order_relaxed) && fifo.bFF_BPInt.load(std::memory_order_relaxed); bool ovfInt = fifo.bFF_HiWatermark.load(std::memory_order_relaxed) && fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed); bool undfInt = fifo.bFF_LoWatermark.load(std::memory_order_relaxed) && fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed); bool interrupt = (bpInt || ovfInt || undfInt) && m_cp_ctrl_reg.GPReadEnable; if (interrupt != m_interrupt_set.IsSet() && !m_interrupt_waiting.IsSet()) { u64 userdata = interrupt ? 1 : 0; if (IsOnThread(system)) { if (!interrupt || bpInt || undfInt || ovfInt) { // Schedule the interrupt asynchronously m_interrupt_waiting.Set(); UpdateInterruptsFromVideoBackend(system, userdata); } } else { UpdateInterrupts(system, userdata); } } } void CommandProcessorManager::SetCPStatusFromCPU(Core::System& system) { auto& fifo = m_fifo; // overflow & underflow check fifo.bFF_HiWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark), std::memory_order_relaxed); fifo.bFF_LoWatermark.store( (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark), std::memory_order_relaxed); bool bpInt = fifo.bFF_Breakpoint.load(std::memory_order_relaxed) && fifo.bFF_BPInt.load(std::memory_order_relaxed); bool ovfInt = fifo.bFF_HiWatermark.load(std::memory_order_relaxed) && fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed); bool undfInt = fifo.bFF_LoWatermark.load(std::memory_order_relaxed) && fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed); bool interrupt = (bpInt || ovfInt || undfInt) && m_cp_ctrl_reg.GPReadEnable; if (interrupt != m_interrupt_set.IsSet() && !m_interrupt_waiting.IsSet()) { u64 userdata = interrupt ? 1 : 0; if (IsOnThread(system)) { if (!interrupt || bpInt || undfInt || ovfInt) { m_interrupt_set.Set(interrupt); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, interrupt); } } else { UpdateInterrupts(system, userdata); } } } void CommandProcessorManager::SetCpStatusRegister() { const auto& fifo = m_fifo; // Here always there is one fifo attached to the GPU m_cp_status_reg.Breakpoint = fifo.bFF_Breakpoint.load(std::memory_order_relaxed); m_cp_status_reg.ReadIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) || (fifo.CPReadPointer.load(std::memory_order_relaxed) == fifo.CPWritePointer.load(std::memory_order_relaxed)); m_cp_status_reg.CommandIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) || Fifo::AtBreakpoint() || !fifo.bFF_GPReadEnable.load(std::memory_order_relaxed); m_cp_status_reg.UnderflowLoWatermark = fifo.bFF_LoWatermark.load(std::memory_order_relaxed); m_cp_status_reg.OverflowHiWatermark = fifo.bFF_HiWatermark.load(std::memory_order_relaxed); DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t Read from STATUS_REGISTER : {:04x}", m_cp_status_reg.Hex); DEBUG_LOG_FMT(COMMANDPROCESSOR, "(r) status: iBP {} | fReadIdle {} | fCmdIdle {} | iOvF {} | iUndF {}", m_cp_status_reg.Breakpoint ? "ON" : "OFF", m_cp_status_reg.ReadIdle ? "ON" : "OFF", m_cp_status_reg.CommandIdle ? "ON" : "OFF", m_cp_status_reg.OverflowHiWatermark ? "ON" : "OFF", m_cp_status_reg.UnderflowLoWatermark ? "ON" : "OFF"); } void CommandProcessorManager::SetCpControlRegister() { auto& fifo = m_fifo; fifo.bFF_BPInt.store(m_cp_ctrl_reg.BPInt, std::memory_order_relaxed); fifo.bFF_BPEnable.store(m_cp_ctrl_reg.BPEnable, std::memory_order_relaxed); fifo.bFF_HiWatermarkInt.store(m_cp_ctrl_reg.FifoOverflowIntEnable, std::memory_order_relaxed); fifo.bFF_LoWatermarkInt.store(m_cp_ctrl_reg.FifoUnderflowIntEnable, std::memory_order_relaxed); fifo.bFF_GPLinkEnable.store(m_cp_ctrl_reg.GPLinkEnable, std::memory_order_relaxed); if (fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) && !m_cp_ctrl_reg.GPReadEnable) { fifo.bFF_GPReadEnable.store(m_cp_ctrl_reg.GPReadEnable, std::memory_order_relaxed); Fifo::FlushGpu(); } else { fifo.bFF_GPReadEnable = m_cp_ctrl_reg.GPReadEnable; } DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t GPREAD {} | BP {} | Int {} | OvF {} | UndF {} | LINK {}", fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "ON" : "OFF", fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "ON" : "OFF", fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "ON" : "OFF", m_cp_ctrl_reg.FifoOverflowIntEnable ? "ON" : "OFF", m_cp_ctrl_reg.FifoUnderflowIntEnable ? "ON" : "OFF", m_cp_ctrl_reg.GPLinkEnable ? "ON" : "OFF"); } // NOTE: We intentionally don't emulate this function at the moment. // We don't emulate proper GP timing anyway at the moment, so it would just slow down emulation. void CommandProcessorManager::SetCpClearRegister() { } void CommandProcessorManager::HandleUnknownOpcode(u8 cmd_byte, const u8* buffer, bool preprocess) { const auto& fifo = m_fifo; // Datel software uses 0x01 during startup, and Mario Party 5's Wiggler capsule accidentally uses // 0x01-0x03 due to sending 4 more vertices than intended (see https://dolp.in/i8104). // Prince of Persia: Rival Swords sends 0x3f if the home menu is opened during the intro cutscene // due to a game bug resulting in an incorrect vertex desc that results in the float value 1.0, // encoded as 0x3f800000, being parsed as an opcode (see https://dolp.in/i9203). // // Hardware testing indicates that these opcodes do nothing, so to avoid annoying the user with // spurious popups, we don't create a panic alert in those cases. Other unknown opcodes // (such as 0x18) seem to result in actual hangs on real hardware, so the alert still is important // to keep around for unexpected cases. const bool suppress_panic_alert = (cmd_byte <= 0x7) || (cmd_byte == 0x3f); const auto log_level = suppress_panic_alert ? Common::Log::LogLevel::LWARNING : Common::Log::LogLevel::LERROR; // We always generate this log message, though we only generate the panic alerts once. // // PC and LR are generally inaccurate in dual-core and are still misleading in single-core // due to the gather pipe queueing data. Changing GATHER_PIPE_SIZE to 1 and // GATHER_PIPE_EXTRA_SIZE to 16 * 32 in GPFifo.h, and using the cached interpreter CPU emulation // engine, can result in more accurate information (though it is still a bit delayed). // PC and LR are meaningless when using the fifoplayer, and will generally not be helpful if the // unknown opcode is inside of a display list. Also note that the changes in GPFifo.h are not // accurate and may introduce timing issues. GENERIC_LOG_FMT( Common::Log::LogType::VIDEO, log_level, "FIFO: Unknown Opcode {:#04x} @ {}, preprocessing = {}, CPBase: {:#010x}, CPEnd: " "{:#010x}, CPHiWatermark: {:#010x}, CPLoWatermark: {:#010x}, CPReadWriteDistance: " "{:#010x}, CPWritePointer: {:#010x}, CPReadPointer: {:#010x}, CPBreakpoint: " "{:#010x}, bFF_GPReadEnable: {}, bFF_BPEnable: {}, bFF_BPInt: {}, bFF_Breakpoint: " "{}, bFF_GPLinkEnable: {}, bFF_HiWatermarkInt: {}, bFF_LoWatermarkInt: {}, " "approximate PC: {:08x}, approximate LR: {:08x}", cmd_byte, fmt::ptr(buffer), preprocess ? "yes" : "no", fifo.CPBase.load(std::memory_order_relaxed), fifo.CPEnd.load(std::memory_order_relaxed), fifo.CPHiWatermark, fifo.CPLoWatermark, fifo.CPReadWriteDistance.load(std::memory_order_relaxed), fifo.CPWritePointer.load(std::memory_order_relaxed), fifo.CPReadPointer.load(std::memory_order_relaxed), fifo.CPBreakpoint.load(std::memory_order_relaxed), fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_Breakpoint.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_GPLinkEnable.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false", fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false", PC, LR); if (!m_is_fifo_error_seen && !suppress_panic_alert) { m_is_fifo_error_seen = true; // TODO(Omega): Maybe dump FIFO to file on this error PanicAlertFmtT("GFX FIFO: Unknown Opcode ({0:#04x} @ {1}, preprocess={2}).\n" "This means one of the following:\n" "* The emulated GPU got desynced, disabling dual core can help\n" "* Command stream corrupted by some spurious memory bug\n" "* This really is an unknown opcode (unlikely)\n" "* Some other sort of bug\n\n" "Further errors will be sent to the Video Backend log and\n" "Dolphin will now likely crash or hang.", cmd_byte, fmt::ptr(buffer), preprocess); } } } // namespace CommandProcessor