// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include #include #include "Common.h" #include "x64Emitter.h" #include "ABI.h" #include "Profiler.h" #include "StringUtil.h" #include "Render.h" #include "VertexLoader.h" #include "BPStructs.h" #include "DataReader.h" #include "VertexShaderManager.h" #include "PixelShaderManager.h" #include "TextureMngr.h" #include "MemoryUtil.h" #include #define MAX_BUFFER_SIZE 0x4000 // internal state for loading vertices static u32 s_prevvbstride, s_prevcomponents; // previous state set static u8 *s_pBaseBufferPointer = NULL; static GLuint s_vboBuffers[0x40] = {0}; static int s_nCurVBOIndex = 0; // current free buffer static GLenum s_prevprimitive = 0; // current primitive type static vector< pair > s_vStoredPrimitives; // every element, mode and count to be passed to glDrawArrays static void (*fnSetupVertexPointers)() = NULL; //these don't need to be saved static float posScale; static int colElements[2]; static float tcScaleU[8]; static float tcScaleV[8]; static int tcIndex; static int colIndex; #ifndef _WIN32 #undef inline #define inline #endif inline u8 ReadBuffer8() { return g_pDataReader->Read8(); } inline u16 ReadBuffer16() { //PowerPC byte ordering :( return g_pDataReader->Read16(); } inline u32 ReadBuffer32() { //PowerPC byte ordering :( return g_pDataReader->Read32(); } inline float ReadBuffer32F() { u32 temp = g_pDataReader->Read32(); return *(float*)(&temp); } inline int GetBufferPosition() { return g_pDataReader->GetPosition(); } // ============================================================================== // Direct // ============================================================================== static u8 s_curposmtx, s_curtexmtx[8]; static int s_texmtxwrite = 0, s_texmtxread = 0; void LOADERDECL PosMtx_ReadDirect_UByte(void* _p) { s_curposmtx = ReadBuffer8()&0x3f; PRIM_LOG("posmtx: %d, ", s_curposmtx); } void LOADERDECL PosMtx_Write(void* _p) { *VertexManager::s_pCurBufferPointer++ = s_curposmtx; //*VertexManager::s_pCurBufferPointer++ = 0; //*VertexManager::s_pCurBufferPointer++ = 0; //*VertexManager::s_pCurBufferPointer++ = 0; } void LOADERDECL TexMtx_ReadDirect_UByte(void* _p) { s_curtexmtx[s_texmtxread] = ReadBuffer8()&0x3f; PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]); s_texmtxread++; } void LOADERDECL TexMtx_Write_Float(void* _p) { *(float*)VertexManager::s_pCurBufferPointer = (float)s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 4; } void LOADERDECL TexMtx_Write_Float2(void* _p) { ((float*)VertexManager::s_pCurBufferPointer)[0] = 0; ((float*)VertexManager::s_pCurBufferPointer)[1] = (float)s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 8; } void LOADERDECL TexMtx_Write_Short3(void* _p) { ((s16*)VertexManager::s_pCurBufferPointer)[0] = 0; ((s16*)VertexManager::s_pCurBufferPointer)[1] = 0; ((s16*)VertexManager::s_pCurBufferPointer)[2] = s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 6; } #include "VertexLoader_Position.h" #include "VertexLoader_Normal.h" #include "VertexLoader_Color.h" #include "VertexLoader_TextCoord.h" VertexLoader g_VertexLoaders[8]; #define COMPILED_CODE_SIZE 4096 VertexLoader::VertexLoader() { m_numPipelineStates = 0; m_VertexSize = 0; m_AttrDirty = 1; VertexLoader_Normal::Init(); m_compiledCode = (u8 *)AllocateExecutableMemory(COMPILED_CODE_SIZE, false); if (m_compiledCode) { memset(m_compiledCode, 0, COMPILED_CODE_SIZE); } } VertexLoader::~VertexLoader() { FreeMemoryPages(m_compiledCode, COMPILED_CODE_SIZE); } int VertexLoader::ComputeVertexSize() { if (!m_AttrDirty) { if (m_VtxDesc.Hex0 == VertexManager::GetVtxDesc().Hex0 && (m_VtxDesc.Hex1&1)==(VertexManager::GetVtxDesc().Hex1&1)) return m_VertexSize; m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex; } else { // set anyway m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex; } if( fnSetupVertexPointers != NULL && fnSetupVertexPointers == (void (*)())(void*)m_compiledCode ) VertexManager::Flush(); m_AttrDirty = 1; m_VertexSize = 0; // Position Matrix Index if (m_VtxDesc.PosMatIdx) m_VertexSize += 1; // Texture matrix indices if (m_VtxDesc.Tex0MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex1MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex2MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex3MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex4MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex5MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex6MatIdx) {m_VertexSize+=1; } if (m_VtxDesc.Tex7MatIdx) {m_VertexSize+=1; } switch (m_VtxDesc.Position) { case NOT_PRESENT: {_assert_("Vertex descriptor without position!");} break; case DIRECT: { switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: case FORMAT_BYTE: m_VertexSize += m_VtxAttr.PosElements?3:2; break; case FORMAT_USHORT: case FORMAT_SHORT: m_VertexSize += m_VtxAttr.PosElements?6:4; break; case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.PosElements?12:8; break; default: _assert_(0); break; } } break; case INDEX8: m_VertexSize+=1; break; case INDEX16: m_VertexSize+=2; break; } VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3; if (m_VtxDesc.Normal != NOT_PRESENT) m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements); // Colors int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; for (int i = 0; i < 2; i++) { switch (col[i]) { case NOT_PRESENT: break; case DIRECT: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: m_VertexSize+=2; break; case FORMAT_24B_888: m_VertexSize+=3; break; case FORMAT_32B_888x: m_VertexSize+=4; break; case FORMAT_16B_4444: m_VertexSize+=2; break; case FORMAT_24B_6666: m_VertexSize+=3; break; case FORMAT_32B_8888: m_VertexSize+=4; break; default: _assert_(0); break; } break; case INDEX8: m_VertexSize+=1; break; case INDEX16: m_VertexSize+=2; break; } } // TextureCoord int tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord, }; for (int i = 0; i < 8; i++) { switch (tc[i]) { case NOT_PRESENT: break; case DIRECT: { switch (m_VtxAttr.texCoord[i].Format) { case FORMAT_UBYTE: case FORMAT_BYTE: m_VertexSize += m_VtxAttr.texCoord[i].Elements?2:1; break; case FORMAT_USHORT: case FORMAT_SHORT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?4:2; break; case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?8:4; break; default: _assert_(0); break; } } break; case INDEX8: m_VertexSize+=1; break; case INDEX16: m_VertexSize+=2; break; } } return m_VertexSize; } // Note the use of CallCdeclFunction3I etc. // This is a horrible hack that is necessary because Opengl32.dll is based way, way above the 32-bit address space // that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we want to grab // the function pointers from the import table instead. // This problem does not apply to glew functions, only core opengl32 functions. DECLARE_IMPORT(glNormalPointer); DECLARE_IMPORT(glVertexPointer); DECLARE_IMPORT(glColorPointer); DECLARE_IMPORT(glTexCoordPointer); void VertexLoader::ProcessFormat() { using namespace Gen; //_assert_( VertexManager::s_pCurBufferPointer == s_pBaseBufferPointer ); if (!m_AttrDirty) { if (m_VtxDesc.Hex0 == VertexManager::GetVtxDesc().Hex0 && (m_VtxDesc.Hex1&1)==(VertexManager::GetVtxDesc().Hex1&1)) return; // same } else m_AttrDirty = 0; m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex; DVSTARTPROFILE(); // Reset pipeline m_VBStridePad = 0; m_VBVertexStride = 0; m_numPipelineStates = 0; m_components = 0; // m_VBVertexStride for texmtx and posmtx is computed later when writing // Position Matrix Index if (m_VtxDesc.PosMatIdx) { m_PipelineStates[m_numPipelineStates++] = PosMtx_ReadDirect_UByte; m_components |= VB_HAS_POSMTXIDX; } if (m_VtxDesc.Tex0MatIdx) {m_components|=VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex1MatIdx) {m_components|=VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex2MatIdx) {m_components|=VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex3MatIdx) {m_components|=VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex4MatIdx) {m_components|=VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex5MatIdx) {m_components|=VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex6MatIdx) {m_components|=VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex7MatIdx) {m_components|=VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); } // Position if (m_VtxDesc.Position != NOT_PRESENT) m_VBVertexStride += 12; switch (m_VtxDesc.Position) { case NOT_PRESENT: {_assert_msg_(0,"Vertex descriptor without position!","WTF?");} break; case DIRECT: { switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: WriteCall(Pos_ReadDirect_UByte); break; case FORMAT_BYTE: WriteCall(Pos_ReadDirect_Byte); break; case FORMAT_USHORT: WriteCall(Pos_ReadDirect_UShort); break; case FORMAT_SHORT: WriteCall(Pos_ReadDirect_Short); break; case FORMAT_FLOAT: WriteCall(Pos_ReadDirect_Float); break; default: _assert_(0); break; } } break; case INDEX8: switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: WriteCall(Pos_ReadIndex8_UByte); break; //WTF? case FORMAT_BYTE: WriteCall(Pos_ReadIndex8_Byte); break; case FORMAT_USHORT: WriteCall(Pos_ReadIndex8_UShort); break; case FORMAT_SHORT: WriteCall(Pos_ReadIndex8_Short); break; case FORMAT_FLOAT: WriteCall(Pos_ReadIndex8_Float); break; default: _assert_(0); break; } break; case INDEX16: switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: WriteCall(Pos_ReadIndex16_UByte); break; case FORMAT_BYTE: WriteCall(Pos_ReadIndex16_Byte); break; case FORMAT_USHORT: WriteCall(Pos_ReadIndex16_UShort); break; case FORMAT_SHORT: WriteCall(Pos_ReadIndex16_Short); break; case FORMAT_FLOAT: WriteCall(Pos_ReadIndex16_Float); break; default: _assert_(0); break; } break; } // Normals if (m_VtxDesc.Normal != NOT_PRESENT) { VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3 ? true : false; TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements); if (pFunc == 0) { char temp[256]; sprintf(temp,"%i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements); g_VideoInitialize.pSysMessage("VertexLoader_Normal::GetFunction returned zero!"); } WriteCall(pFunc); int sizePro=0; switch (m_VtxAttr.NormalFormat) { case FORMAT_UBYTE: sizePro=1; break; case FORMAT_BYTE: sizePro=1; break; case FORMAT_USHORT: sizePro=2; break; case FORMAT_SHORT: sizePro=2; break; case FORMAT_FLOAT: sizePro=4; break; default: _assert_(0); break; } m_VBVertexStride += sizePro * 3 * (m_VtxAttr.NormalElements?3:1); int m_numNormals = (m_VtxAttr.NormalElements==1) ? NRM_THREE : NRM_ONE; m_components |= VB_HAS_NRM0; if (m_numNormals == NRM_THREE) m_components |= VB_HAS_NRM1 | VB_HAS_NRM2; } // Colors int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; for (int i = 0; i < 2; i++) { SetupColor(i, col[i], m_VtxAttr.color[i].Comp, m_VtxAttr.color[i].Elements); if (col[i] != NOT_PRESENT ) m_VBVertexStride+=4; } // TextureCoord int tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord, }; // Texture matrix indices (remove if corresponding texture coordinate isn't enabled) for (int i = 0; i < 8; i++) { SetupTexCoord(i, tc[i], m_VtxAttr.texCoord[i].Format, m_VtxAttr.texCoord[i].Elements, m_VtxAttr.texCoord[i].Frac); if( m_components&(VB_HAS_TEXMTXIDX0< COMPILED_CODE_SIZE) { assert(0); Crash(); } SetCodePtr(old_code_ptr); } void VertexLoader::PrepareRun() { posScale = VertexManager::shiftLookup[m_VtxAttr.PosFrac]; if( m_components & VB_HAS_UVALL ) { for (int i = 0; i < 8; i++) { tcScaleU[i] = VertexManager::shiftLookup[m_VtxAttr.texCoord[i].Frac]; tcScaleV[i] = VertexManager::shiftLookup[m_VtxAttr.texCoord[i].Frac]; } } for (int i = 0; i < 2; i++) colElements[i] = m_VtxAttr.color[i].Elements; } void VertexLoader::SetupColor(int num, int mode, int format, int elements) { // if COL0 not present, then embed COL1 into COL0 if( num == 1 && !(m_components & VB_HAS_COL0) ) num = 0; m_components |= VB_HAS_COL0 << num; switch (mode) { case NOT_PRESENT: m_components &= ~(VB_HAS_COL0 << num); break; case DIRECT: switch (format) { case FORMAT_16B_565: WriteCall(Color_ReadDirect_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadDirect_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadDirect_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadDirect_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadDirect_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadDirect_32b_8888); break; default: _assert_(0); break; } break; case INDEX8: switch (format) { case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break; default: _assert_(0); break; } break; case INDEX16: switch (format) { case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break; default: _assert_(0); break; } break; } } void VertexLoader::SetupTexCoord(int num, int mode, int format, int elements, int _iFrac) { m_components |= VB_HAS_UV0 << num; switch (mode) { case NOT_PRESENT: m_components &= ~(VB_HAS_UV0 << num); break; case DIRECT: switch (format) { case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadDirect_UByte2:TexCoord_ReadDirect_UByte1); break; case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadDirect_Byte2:TexCoord_ReadDirect_Byte1); break; case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadDirect_UShort2:TexCoord_ReadDirect_UShort1); break; case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadDirect_Short2:TexCoord_ReadDirect_Short1); break; case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadDirect_Float2:TexCoord_ReadDirect_Float1); break; default: _assert_(0); break; } break; case INDEX8: switch (format) { case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex8_UByte2:TexCoord_ReadIndex8_UByte1); break; case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex8_Byte2:TexCoord_ReadIndex8_Byte1); break; case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex8_UShort2:TexCoord_ReadIndex8_UShort1); break; case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex8_Short2:TexCoord_ReadIndex8_Short1); break; case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex8_Float2:TexCoord_ReadIndex8_Float1); break; default: _assert_(0); break; } break; case INDEX16: switch (format) { case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex16_UByte2:TexCoord_ReadIndex16_UByte1); break; case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex16_Byte2:TexCoord_ReadIndex16_Byte1); break; case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex16_UShort2:TexCoord_ReadIndex16_UShort1); break; case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex16_Short2:TexCoord_ReadIndex16_Short1); break; case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex16_Float2:TexCoord_ReadIndex16_Float1); break; default: _assert_(0); } break; } } void VertexLoader::WriteCall(void (LOADERDECL *func)(void *)) { m_PipelineStates[m_numPipelineStates++] = func; } void VertexLoader::RunVertices(int primitive, int count) { ComputeVertexSize(); // HACK for underruns in Super Monkey Ball etc. !!!! if( count <= 0 ) return; if( fnSetupVertexPointers != NULL && fnSetupVertexPointers != (void (*)())(void*)m_compiledCode ) VertexManager::Flush(); if( bpmem.genMode.cullmode == 3 && primitive < 5) { // if cull mode is none, ignore triangles and quads g_pDataReader->Skip(count*m_VertexSize); return; } DVSTARTPROFILE(); ProcessFormat(); fnSetupVertexPointers = (void (*)())(void*)m_compiledCode; if (s_prevcomponents != m_components) { VertexManager::Flush(); // matrices if ((m_components & VB_HAS_POSMTXIDX) != (s_prevcomponents&VB_HAS_POSMTXIDX)) { if (m_components & VB_HAS_POSMTXIDX) glEnableVertexAttribArray(SHADER_POSMTX_ATTRIB); else glDisableVertexAttribArray(SHADER_POSMTX_ATTRIB); } // normals if ((m_components & VB_HAS_NRM0) != (s_prevcomponents&VB_HAS_NRM0)) { if (m_components & VB_HAS_NRM0) glEnableClientState(GL_NORMAL_ARRAY); else glDisableClientState(GL_NORMAL_ARRAY); } if ((m_components & VB_HAS_NRM1) != (s_prevcomponents&VB_HAS_NRM1)) { if (m_components & VB_HAS_NRM1) { glEnableVertexAttribArray(SHADER_NORM1_ATTRIB); glEnableVertexAttribArray(SHADER_NORM2_ATTRIB); } else { glDisableVertexAttribArray(SHADER_NORM1_ATTRIB); glDisableVertexAttribArray(SHADER_NORM2_ATTRIB); } } // color for(int i = 0; i < 2; ++i) { if ( (m_components & (VB_HAS_COL0 << i)) != (s_prevcomponents & (VB_HAS_COL0 << i)) ) { if (m_components & (VB_HAS_COL0 << 0)) glEnableClientState(i?GL_SECONDARY_COLOR_ARRAY:GL_COLOR_ARRAY); else glDisableClientState(i?GL_SECONDARY_COLOR_ARRAY:GL_COLOR_ARRAY); } } // tex for (int i = 0; i < 8; ++i) { if ((m_components&(VB_HAS_UV0< 0 ) VertexManager::AddVertices(primitive, v-startv+extraverts); VertexManager::Flush(); switch( primitive ) { case 3: // triangle strip, copy last two vertices // a little trick since we have to keep track of signs if( v & 1 ) { memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-2*m_VBVertexStride, m_VBVertexStride); memcpy_gc(VertexManager::s_pCurBufferPointer+m_VBVertexStride, plastptr-m_VBVertexStride*2, 2*m_VBVertexStride); VertexManager::s_pCurBufferPointer += m_VBVertexStride*3; extraverts = 3; } else { memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride*2, m_VBVertexStride*2); VertexManager::s_pCurBufferPointer += m_VBVertexStride*2; extraverts = 2; } break; case 4: // tri fan, copy first and last vert memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride*(v-startv+extraverts), m_VBVertexStride); VertexManager::s_pCurBufferPointer += m_VBVertexStride; memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride, m_VBVertexStride); VertexManager::s_pCurBufferPointer += m_VBVertexStride; extraverts = 2; break; case 6: // line strip memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride, m_VBVertexStride); VertexManager::s_pCurBufferPointer += m_VBVertexStride; extraverts = 1; break; default: extraverts = 0; break; } startv = v; } } tcIndex = 0; colIndex = 0; s_texmtxwrite = s_texmtxread = 0; // int pred_size = m_VertexSize; //int start = GetBufferPosition(); //if (!m_numPipelineStates) // PanicAlert("trying to draw with no pipeline"); for (int i = 0; i < m_numPipelineStates; i++) m_PipelineStates[i](&m_VtxAttr); //int end = GetBufferPosition(); //if (end - start != pred_size) { // std::string vtx_summary; // vtx_summary += StringFromFormat("Nrm d:%i f:%i e:%i 3:%i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); // PanicAlert((vtx_summary + "\nWTF %i %i").c_str(), end - start, pred_size); //} VertexManager::s_pCurBufferPointer += m_VBStridePad; PRIM_LOG("\n"); } if( startv < count ) VertexManager::AddVertices(primitive, count-startv+extraverts); } /////////////////// // VertexManager // /////////////////// TVtxDesc VertexManager::s_GlobalVtxDesc; u8* VertexManager::s_pCurBufferPointer=NULL; float VertexManager::shiftLookup[32]; const GLenum c_primitiveType[8] = { GL_QUADS, 0, //nothing GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_LINES, GL_LINE_STRIP, GL_POINTS }; bool VertexManager::Init() { Destroy(); s_GlobalVtxDesc.Hex = 0; s_prevcomponents = 0; s_prevvbstride = 12; // just pos s_prevprimitive = 0; s_pBaseBufferPointer = (u8*)AllocateMemoryPages(MAX_BUFFER_SIZE); s_pCurBufferPointer = s_pBaseBufferPointer; for (u32 i = 0; i < ARRAYSIZE(shiftLookup); i++) shiftLookup[i] = 1.0f / float(1 << i); s_nCurVBOIndex = 0; glGenBuffers(ARRAYSIZE(s_vboBuffers), s_vboBuffers); for (u32 i = 0; i < ARRAYSIZE(s_vboBuffers); ++i) { glBindBuffer(GL_ARRAY_BUFFER, s_vboBuffers[i]); glBufferData(GL_ARRAY_BUFFER, MAX_BUFFER_SIZE, NULL, GL_STREAM_DRAW); } glEnableClientState(GL_VERTEX_ARRAY); fnSetupVertexPointers = NULL; GL_REPORT_ERRORD(); return true; } void VertexManager::Destroy() { FreeMemoryPages(s_pBaseBufferPointer, MAX_BUFFER_SIZE); s_pBaseBufferPointer = s_pCurBufferPointer = NULL; glDeleteBuffers(ARRAYSIZE(s_vboBuffers), s_vboBuffers); memset(s_vboBuffers, 0, sizeof(s_vboBuffers)); s_vStoredPrimitives.resize(0); s_nCurVBOIndex = 0; ResetBuffer(); } void VertexManager::ResetBuffer() { s_nCurVBOIndex = (s_nCurVBOIndex+1)%ARRAYSIZE(s_vboBuffers); s_pCurBufferPointer = s_pBaseBufferPointer; s_vStoredPrimitives.resize(0); } void VertexManager::ResetComponents() { s_prevcomponents = 0; s_prevvbstride = 12; // just pos s_prevprimitive = 0; glDisableVertexAttribArray(SHADER_POSMTX_ATTRIB); glDisableClientState(GL_NORMAL_ARRAY); glDisableVertexAttribArray(SHADER_NORM1_ATTRIB); glDisableVertexAttribArray(SHADER_NORM2_ATTRIB); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_SECONDARY_COLOR_ARRAY); for (int i = 0; i < 8; ++i) glDisableClientState(GL_TEXTURE_COORD_ARRAY); } int VertexManager::GetRemainingSize() { return MAX_BUFFER_SIZE - (int)(s_pCurBufferPointer-s_pBaseBufferPointer); } void VertexManager::AddVertices(int primitive, int numvertices) { _assert_( numvertices > 0 ); ADDSTAT(stats.thisFrame.numPrims, numvertices); s_vStoredPrimitives.push_back(pair(c_primitiveType[primitive], numvertices)); #ifdef _DEBUG static const char *sprims[8] = {"quads", "nothing", "tris", "tstrip", "tfan", "lines", "lstrip", "points"}; PRIM_LOG("prim: %s, c=%d\n", sprims[primitive], numvertices); #endif } void VertexManager::Flush() { if (s_vStoredPrimitives.size() == 0) return; _assert_( fnSetupVertexPointers != NULL ); _assert_( s_pCurBufferPointer != s_pBaseBufferPointer ); #ifdef _DEBUG PRIM_LOG("frame%d:\ncomps=0x%x, texgen=%d, numchan=%d, dualtex=%d, ztex=%d, proj=%d, cole=%d, alpe=%d, ze=%d\n", g_Config.iSaveTargetId, s_prevcomponents, xfregs.numTexGens, xfregs.nNumChans, (int)xfregs.bEnableDualTexTransform, bpmem.ztex2.op, VertexShaderMngr::rawProjection[6]==0, bpmem.blendmode.colorupdate, bpmem.blendmode.alphaupdate, bpmem.zmode.updateenable); for(int i = 0; i < xfregs.nNumChans; ++i) { LitChannel* ch = &xfregs.colChans[i].color; PRIM_LOG("colchan%d: matsrc=%d, light=0x%x, ambsrc=%d, diffunc=%d, attfunc=%d\n", i, ch->matsource, ch->GetFullLightMask(), ch->ambsource, ch->diffusefunc, ch->attnfunc); ch = &xfregs.colChans[i].alpha; PRIM_LOG("alpchan%d: matsrc=%d, light=0x%x, ambsrc=%d, diffunc=%d, attfunc=%d\n", i, ch->matsource, ch->GetFullLightMask(), ch->ambsource, ch->diffusefunc, ch->attnfunc); } for(int i = 0; i < xfregs.numTexGens; ++i) { TexMtxInfo tinfo = xfregs.texcoords[i].texmtxinfo; if( tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP ) tinfo.hex &= 0x7ff; if( tinfo.texgentype != XF_TEXGEN_REGULAR ) tinfo.projection = 0; PRIM_LOG("txgen%d: proj=%d, input=%d, gentype=%d, srcrow=%d, embsrc=%d, emblght=%d, postmtx=%d, postnorm=%d\n", i, tinfo.projection, tinfo.inputform, tinfo.texgentype, tinfo.sourcerow, tinfo.embosssourceshift, tinfo.embosslightshift, xfregs.texcoords[i].postmtxinfo.index, xfregs.texcoords[i].postmtxinfo.normalize); } PRIM_LOG("pixel: tev=%d, ind=%d, texgen=%d, dstalpha=%d, alphafunc=0x%x\n", bpmem.genMode.numtevstages+1, bpmem.genMode.numindstages, bpmem.genMode.numtexgens, (u32)bpmem.dstalpha.enable, (bpmem.alphaFunc.hex>>16)&0xff); #endif DVSTARTPROFILE(); GL_REPORT_ERRORD(); glBindBuffer(GL_ARRAY_BUFFER, s_vboBuffers[s_nCurVBOIndex]); glBufferData(GL_ARRAY_BUFFER, s_pCurBufferPointer-s_pBaseBufferPointer, s_pBaseBufferPointer, GL_STREAM_DRAW); GL_REPORT_ERRORD(); // setup the pointers fnSetupVertexPointers(); GL_REPORT_ERRORD(); // set the textures { DVProfileFunc _pf("VertexManager::Flush:textures"); u32 usedtextures = 0; for (u32 i = 0; i < (u32)bpmem.genMode.numtevstages+1; ++i) { if( bpmem.tevorders[i/2].getEnable(i&1) ) usedtextures |= 1< 0 ) { for(u32 i = 0; i < (u32)bpmem.genMode.numtevstages+1; ++i) { if( bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages ) { usedtextures |= 1<>2]; TextureMngr::TCacheEntry* tentry = TextureMngr::Load(i, (tex.texImage3[i&3].image_base/* & 0x1FFFFF*/) << 5, tex.texImage0[i&3].width+1, tex.texImage0[i&3].height+1, tex.texImage0[i&3].format, tex.texTlut[i&3].tmem_offset<<9, tex.texTlut[i&3].tlut_format); if( tentry != NULL ) { // texture loaded fine, set dims for pixel shader if( tentry->isNonPow2 ) { PixelShaderMngr::SetTexDims(i, tentry->w, tentry->h, tentry->mode.wrap_s, tentry->mode.wrap_t); nonpow2tex |= 1<mode.wrap_s > 0 ) nonpow2tex |= 1<<(8+i); if( tentry->mode.wrap_t > 0 ) nonpow2tex |= 1<<(16+i); TextureMngr::EnableTexRECT(i); } // if texture is power of two, set to ones (since don't need scaling) else { PixelShaderMngr::SetTexDims(i, tentry->w, tentry->h, 0, 0); TextureMngr::EnableTex2D(i); } if( g_Config.iLog & CONF_PRIMLOG ) { // save the textures char strfile[255]; sprintf(strfile, "frames/tex%.3d_%d.tga", g_Config.iSaveTargetId, i); SaveTexture(strfile, tentry->isNonPow2?GL_TEXTURE_RECTANGLE_ARB:GL_TEXTURE_2D, tentry->texture, tentry->w, tentry->h); } } else { ERROR_LOG("error loading tex\n"); TextureMngr::DisableStage(i); // disable since won't be used } } else { TextureMngr::DisableStage(i); // disable since won't be used } } PixelShaderMngr::SetTexturesUsed(nonpow2tex); } FRAGMENTSHADER* ps = PixelShaderMngr::GetShader(); VERTEXSHADER* vs = VertexShaderMngr::GetShader(s_prevcomponents); _assert_( ps != NULL && vs != NULL ); bool bRestoreBuffers = false; if( Renderer::GetZBufferTarget() ) { if( bpmem.zmode.updateenable ) { if( !bpmem.blendmode.colorupdate ) { Renderer::SetRenderMode(bpmem.blendmode.alphaupdate?Renderer::RM_ZBufferAlpha:Renderer::RM_ZBufferOnly); } } else { Renderer::SetRenderMode(Renderer::RM_Normal); // remove temporarily glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT); bRestoreBuffers = true; } } else Renderer::SetRenderMode(Renderer::RM_Normal); // set global constants VertexShaderMngr::SetConstants(*vs); PixelShaderMngr::SetConstants(*ps); // finally bind glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vs->glprogid); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, ps->glprogid); PRIM_LOG("\n"); int offset = 0; vector< pair >::iterator it; for (it = s_vStoredPrimitives.begin(); it != s_vStoredPrimitives.end(); ++it) { glDrawArrays(it->first, offset, it->second); offset += it->second; } #ifdef _DEBUG if( g_Config.iLog & CONF_PRIMLOG ) { // save the shaders char strfile[255]; sprintf(strfile, "frames/ps%.3d.txt", g_Config.iSaveTargetId); std::ofstream fps(strfile); fps << ps->strprog.c_str(); sprintf(strfile, "frames/vs%.3d.txt", g_Config.iSaveTargetId); ofstream fvs(strfile); fvs << vs->strprog.c_str(); } if( g_Config.iLog & CONF_SAVETARGETS ) { char str[128]; sprintf(str, "frames/targ%.3d.tga", g_Config.iSaveTargetId); Renderer::SaveRenderTarget(str, 0); } #endif g_Config.iSaveTargetId++; GL_REPORT_ERRORD(); if( bRestoreBuffers ) { GLenum s_drawbuffers[2] = {GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT}; glDrawBuffers(2, s_drawbuffers); SetColorMask(); } ResetBuffer(); } void VertexManager::LoadCPReg(u32 SubCmd, u32 Value) { switch (SubCmd & 0xF0) { case 0x30: VertexShaderMngr::SetTexMatrixChangedA(Value); break; case 0x40: VertexShaderMngr::SetTexMatrixChangedB(Value); break; case 0x50: s_GlobalVtxDesc.Hex &= ~0x1FFFF; // keep the Upper bits s_GlobalVtxDesc.Hex |= Value; break; case 0x60: s_GlobalVtxDesc.Hex &= 0x1FFFF; // keep the lower 17Bits s_GlobalVtxDesc.Hex |= (u64)Value << 17; break; case 0x70: g_VertexLoaders[SubCmd & 7].SetVAT_group0(Value); _assert_((SubCmd & 0x0F) < 8); break; case 0x80: g_VertexLoaders[SubCmd & 7].SetVAT_group1(Value); _assert_((SubCmd & 0x0F) < 8); break; case 0x90: g_VertexLoaders[SubCmd & 7].SetVAT_group2(Value); _assert_((SubCmd & 0x0F) < 8); break; case 0xA0: arraybases[SubCmd & 0xF] = Value & 0xFFFFFFFF; break; case 0xB0: arraystrides[SubCmd & 0xF] = Value & 0xFF; break; } }