// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/TextureConverter.h" #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonFuncs.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/Texture2D.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VKTexture.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/TextureConversionShader.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VideoConfig.h" namespace Vulkan { namespace { struct EFBEncodeParams { std::array position_uniform; float y_scale; }; } TextureConverter::TextureConverter() { } TextureConverter::~TextureConverter() { for (const auto& it : m_palette_conversion_shaders) { if (it != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), it, nullptr); } if (m_texel_buffer_view_r8_uint != VK_NULL_HANDLE) vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r8_uint, nullptr); if (m_texel_buffer_view_r16_uint != VK_NULL_HANDLE) vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r16_uint, nullptr); if (m_texel_buffer_view_r32g32_uint != VK_NULL_HANDLE) vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r32g32_uint, nullptr); if (m_texel_buffer_view_rgba8_unorm != VK_NULL_HANDLE) vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_rgba8_unorm, nullptr); if (m_texel_buffer_view_rgba8_uint != VK_NULL_HANDLE) vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_rgba8_uint, nullptr); if (m_encoding_render_pass != VK_NULL_HANDLE) vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_encoding_render_pass, nullptr); for (auto& it : m_encoding_shaders) vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second, nullptr); for (const auto& it : m_decoding_pipelines) { if (it.second.compute_shader != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.compute_shader, nullptr); } if (m_rgb_to_yuyv_shader != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_rgb_to_yuyv_shader, nullptr); if (m_yuyv_to_rgb_shader != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_yuyv_to_rgb_shader, nullptr); } bool TextureConverter::Initialize() { if (!CreateTexelBuffer()) { PanicAlert("Failed to create uniform buffer"); return false; } if (!CompilePaletteConversionShaders()) { PanicAlert("Failed to compile palette conversion shaders"); return false; } if (!CreateEncodingRenderPass()) { PanicAlert("Failed to create encode render pass"); return false; } if (!CreateEncodingTexture()) { PanicAlert("Failed to create encoding texture"); return false; } if (!CreateDecodingTexture()) { PanicAlert("Failed to create decoding texture"); return false; } if (!CompileYUYVConversionShaders()) { PanicAlert("Failed to compile YUYV conversion shaders"); return false; } return true; } bool TextureConverter::ReserveTexelBufferStorage(size_t size, size_t alignment) { // Enforce the minimum alignment for texture buffers on the device. size_t actual_alignment = std::max(static_cast(g_vulkan_context->GetTexelBufferAlignment()), alignment); if (m_texel_buffer->ReserveMemory(size, actual_alignment)) return true; WARN_LOG(VIDEO, "Executing command list while waiting for space in palette buffer"); Util::ExecuteCurrentCommandsAndRestoreState(false); // This next call should never fail, since a command buffer is now in-flight and we can // wait on the fence for the GPU to finish. If this returns false, it's probably because // the device has been lost, which is fatal anyway. if (!m_texel_buffer->ReserveMemory(size, actual_alignment)) { PanicAlert("Failed to allocate space for texture conversion"); return false; } return true; } VkCommandBuffer TextureConverter::GetCommandBufferForTextureConversion(const TextureCache::TCacheEntry* src_entry) { // EFB copies can be used as paletted textures as well. For these, we can't assume them to be // contain the correct data before the frame begins (when the init command buffer is executed), // so we must convert them at the appropriate time, during the drawing command buffer. if (src_entry->IsCopy()) { StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->SetPendingRebind(); return g_command_buffer_mgr->GetCurrentCommandBuffer(); } else { // Use initialization command buffer and perform conversion before the drawing commands. return g_command_buffer_mgr->GetCurrentInitCommandBuffer(); } } void TextureConverter::ConvertTexture(TextureCacheBase::TCacheEntry* dst_entry, TextureCacheBase::TCacheEntry* src_entry, VkRenderPass render_pass, const void* palette, TLUTFormat palette_format) { struct PSUniformBlock { float multiplier; int texel_buffer_offset; int pad[2]; }; VKTexture* source_texture = static_cast(src_entry->texture.get()); VKTexture* destination_texture = static_cast(dst_entry->texture.get()); _assert_(static_cast(palette_format) < NUM_PALETTE_CONVERSION_SHADERS); _assert_(destination_texture->GetConfig().rendertarget); // We want to align to 2 bytes (R16) or the device's texel buffer alignment, whichever is greater. size_t palette_size = src_entry->format == TextureFormat::I4 ? 32 : 512; if (!ReserveTexelBufferStorage(palette_size, sizeof(u16))) return; // Copy in palette to texel buffer. u32 palette_offset = static_cast(m_texel_buffer->GetCurrentOffset()); memcpy(m_texel_buffer->GetCurrentHostPointer(), palette, palette_size); m_texel_buffer->CommitMemory(palette_size); VkCommandBuffer command_buffer = GetCommandBufferForTextureConversion(src_entry); source_texture->GetRawTexIdentifier()->TransitionToLayout( command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); destination_texture->GetRawTexIdentifier()->TransitionToLayout( command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Bind and draw to the destination. UtilityShaderDraw draw(command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION), render_pass, g_shader_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE, m_palette_conversion_shaders[static_cast(palette_format)]); VkRect2D region = {{0, 0}, {dst_entry->GetWidth(), dst_entry->GetHeight()}}; draw.BeginRenderPass(destination_texture->GetFramebuffer(), region); PSUniformBlock uniforms = {}; uniforms.multiplier = src_entry->format == TextureFormat::I4 ? 15.0f : 255.0f; uniforms.texel_buffer_offset = static_cast(palette_offset / sizeof(u16)); draw.SetPushConstants(&uniforms, sizeof(uniforms)); draw.SetPSSampler(0, source_texture->GetRawTexIdentifier()->GetView(), g_object_cache->GetPointSampler()); draw.SetPSTexelBuffer(m_texel_buffer_view_r16_uint); draw.SetViewportAndScissor(0, 0, dst_entry->GetWidth(), dst_entry->GetHeight()); draw.DrawWithoutVertexBuffer(4); draw.EndRenderPass(); } void TextureConverter::EncodeTextureToMemory(VkImageView src_texture, u8* dest_ptr, const EFBCopyParams& params, u32 native_width, u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride, const EFBRectangle& src_rect, bool scale_by_half) { VkShaderModule shader = GetEncodingShader(params); if (shader == VK_NULL_HANDLE) { ERROR_LOG(VIDEO, "Missing encoding fragment shader for format %u->%u", static_cast(params.efb_format), static_cast(params.copy_format)); return; } // Can't do our own draw within a render pass. StateTracker::GetInstance()->EndRenderPass(); static_cast(m_encoding_render_texture.get()) ->GetRawTexIdentifier() ->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_PUSH_CONSTANT), m_encoding_render_pass, g_shader_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE, shader); // Uniform - int4 of left,top,native_width,scale EFBEncodeParams encoder_params; encoder_params.position_uniform[0] = src_rect.left; encoder_params.position_uniform[1] = src_rect.top; encoder_params.position_uniform[2] = static_cast(native_width); encoder_params.position_uniform[3] = scale_by_half ? 2 : 1; encoder_params.y_scale = params.y_scale; draw.SetPushConstants(&encoder_params, sizeof(encoder_params)); // We also linear filtering for both box filtering and downsampling higher resolutions to 1x // TODO: This only produces perfect downsampling for 2x IR, other resolutions will need more // complex down filtering to average all pixels and produce the correct result. bool linear_filter = (scale_by_half && !params.depth) || g_renderer->GetEFBScale() != 1 || params.y_scale > 1.0f; draw.SetPSSampler(0, src_texture, linear_filter ? g_object_cache->GetLinearSampler() : g_object_cache->GetPointSampler()); u32 render_width = bytes_per_row / sizeof(u32); u32 render_height = num_blocks_y; Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0, render_width, render_height); VkRect2D render_region = {{0, 0}, {render_width, render_height}}; draw.BeginRenderPass(static_cast(m_encoding_render_texture.get())->GetFramebuffer(), render_region); draw.DrawWithoutVertexBuffer(4); draw.EndRenderPass(); MathUtil::Rectangle copy_rect(0, 0, render_width, render_height); m_encoding_readback_texture->CopyFromTexture(m_encoding_render_texture.get(), copy_rect, 0, 0, copy_rect); m_encoding_readback_texture->ReadTexels(copy_rect, dest_ptr, memory_stride); } void TextureConverter::EncodeTextureToMemoryYUYV(void* dst_ptr, u32 dst_width, u32 dst_stride, u32 dst_height, Texture2D* src_texture, const MathUtil::Rectangle& src_rect) { StateTracker::GetInstance()->EndRenderPass(); // Borrow framebuffer from EFB2RAM encoder. VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer(); src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); static_cast(m_encoding_render_texture.get()) ->GetRawTexIdentifier() ->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Use fragment shader to convert RGBA to YUYV. // Use linear sampler for downscaling. This texture is in BGRA order, so the data is already in // the order the guest is expecting and we don't have to swap it at readback time. The width // is halved because we're using an RGBA8 texture, but the YUYV data is two bytes per pixel. u32 output_width = dst_width / 2; UtilityShaderDraw draw(command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), m_encoding_render_pass, g_shader_cache->GetPassthroughVertexShader(), VK_NULL_HANDLE, m_rgb_to_yuyv_shader); VkRect2D region = {{0, 0}, {output_width, dst_height}}; draw.BeginRenderPass(static_cast(m_encoding_render_texture.get())->GetFramebuffer(), region); draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler()); draw.DrawQuad(0, 0, static_cast(output_width), static_cast(dst_height), src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(), static_cast(src_texture->GetWidth()), static_cast(src_texture->GetHeight())); draw.EndRenderPass(); // Copy from encoding texture to download buffer. MathUtil::Rectangle copy_rect(0, 0, output_width, dst_height); m_encoding_readback_texture->CopyFromTexture(m_encoding_render_texture.get(), copy_rect, 0, 0, copy_rect); m_encoding_readback_texture->ReadTexels(copy_rect, dst_ptr, dst_stride); } void TextureConverter::DecodeYUYVTextureFromMemory(VKTexture* dst_texture, const void* src_ptr, u32 src_width, u32 src_stride, u32 src_height) { // Copies (and our decoding step) cannot be done inside a render pass. StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->SetPendingRebind(); // Pack each row without any padding in the texel buffer. size_t upload_stride = src_width * sizeof(u16); size_t upload_size = upload_stride * src_height; // Reserve space in the texel buffer for storing the raw image. if (!ReserveTexelBufferStorage(upload_size, sizeof(u16))) return; // Handle pitch differences here. if (src_stride != upload_stride) { const u8* src_row_ptr = reinterpret_cast(src_ptr); u8* dst_row_ptr = m_texel_buffer->GetCurrentHostPointer(); size_t copy_size = std::min(upload_stride, static_cast(src_stride)); for (u32 row = 0; row < src_height; row++) { std::memcpy(dst_row_ptr, src_row_ptr, copy_size); src_row_ptr += src_stride; dst_row_ptr += upload_stride; } } else { std::memcpy(m_texel_buffer->GetCurrentHostPointer(), src_ptr, upload_size); } VkDeviceSize texel_buffer_offset = m_texel_buffer->GetCurrentOffset(); m_texel_buffer->CommitMemory(upload_size); dst_texture->GetRawTexIdentifier()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // We divide the offset by 4 here because we're fetching RGBA8 elements. // The stride is in RGBA8 elements, so we divide by two because our data is two bytes per pixel. struct PSUniformBlock { int buffer_offset; int src_stride; }; PSUniformBlock push_constants = {static_cast(texel_buffer_offset / sizeof(u32)), static_cast(src_width / 2)}; // Convert from the YUYV data now in the intermediate texture to RGBA in the destination. UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION), m_encoding_render_pass, g_shader_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE, m_yuyv_to_rgb_shader); VkRect2D region = {{0, 0}, {src_width, src_height}}; draw.BeginRenderPass(dst_texture->GetFramebuffer(), region); draw.SetViewportAndScissor(0, 0, static_cast(src_width), static_cast(src_height)); draw.SetPSTexelBuffer(m_texel_buffer_view_rgba8_unorm); draw.SetPushConstants(&push_constants, sizeof(push_constants)); draw.DrawWithoutVertexBuffer(4); draw.EndRenderPass(); } bool TextureConverter::SupportsTextureDecoding(TextureFormat format, TLUTFormat palette_format) { auto key = std::make_pair(format, palette_format); auto iter = m_decoding_pipelines.find(key); if (iter != m_decoding_pipelines.end()) return iter->second.valid; TextureDecodingPipeline pipeline; pipeline.base_info = TextureConversionShaderTiled::GetDecodingShaderInfo(format); pipeline.compute_shader = VK_NULL_HANDLE; pipeline.valid = false; if (!pipeline.base_info) { m_decoding_pipelines.emplace(key, pipeline); return false; } std::string shader_source = TextureConversionShaderTiled::GenerateDecodingShader(format, palette_format, APIType::Vulkan); pipeline.compute_shader = Util::CompileAndCreateComputeShader(shader_source); if (pipeline.compute_shader == VK_NULL_HANDLE) { m_decoding_pipelines.emplace(key, pipeline); return false; } pipeline.valid = true; m_decoding_pipelines.emplace(key, pipeline); return true; } void TextureConverter::DecodeTexture(VkCommandBuffer command_buffer, TextureCache::TCacheEntry* entry, u32 dst_level, const u8* data, size_t data_size, TextureFormat format, u32 width, u32 height, u32 aligned_width, u32 aligned_height, u32 row_stride, const u8* palette, TLUTFormat palette_format) { VKTexture* destination_texture = static_cast(entry->texture.get()); auto key = std::make_pair(format, palette_format); auto iter = m_decoding_pipelines.find(key); if (iter == m_decoding_pipelines.end()) return; struct PushConstants { u32 dst_size[2]; u32 src_size[2]; u32 src_offset; u32 src_row_stride; u32 palette_offset; }; // Copy to GPU-visible buffer, aligned to the data type auto info = iter->second; u32 bytes_per_buffer_elem = TextureConversionShaderTiled::GetBytesPerBufferElement(info.base_info->buffer_format); // Calculate total data size, including palette. // Only copy palette if it is required. u32 total_upload_size = static_cast(data_size); u32 palette_size = iter->second.base_info->palette_size; u32 palette_offset = total_upload_size; bool has_palette = palette_size > 0; if (has_palette) { // Align to u16. if ((total_upload_size % sizeof(u16)) != 0) { total_upload_size++; palette_offset++; } total_upload_size += palette_size; } // Allocate space for upload, if it fails, execute the buffer. if (!m_texel_buffer->ReserveMemory(total_upload_size, bytes_per_buffer_elem)) { Util::ExecuteCurrentCommandsAndRestoreState(true, false); if (!m_texel_buffer->ReserveMemory(total_upload_size, bytes_per_buffer_elem)) PanicAlert("Failed to reserve memory for encoded texture upload"); } // Copy/commit upload buffer. u32 texel_buffer_offset = static_cast(m_texel_buffer->GetCurrentOffset()); Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_texel_buffer->GetBuffer(), VK_ACCESS_SHADER_READ_BIT, VK_ACCESS_HOST_WRITE_BIT, texel_buffer_offset, total_upload_size, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_HOST_BIT); std::memcpy(m_texel_buffer->GetCurrentHostPointer(), data, data_size); if (has_palette) std::memcpy(m_texel_buffer->GetCurrentHostPointer() + palette_offset, palette, palette_size); m_texel_buffer->CommitMemory(total_upload_size); Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_texel_buffer->GetBuffer(), VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, texel_buffer_offset, total_upload_size, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT); // Determine uniforms. PushConstants constants = { {width, height}, {aligned_width, aligned_height}, texel_buffer_offset / bytes_per_buffer_elem, row_stride / bytes_per_buffer_elem, static_cast((texel_buffer_offset + palette_offset) / sizeof(u16))}; // Determine view to use for texel buffers. VkBufferView data_view = VK_NULL_HANDLE; switch (iter->second.base_info->buffer_format) { case TextureConversionShaderTiled::BUFFER_FORMAT_R8_UINT: data_view = m_texel_buffer_view_r8_uint; break; case TextureConversionShaderTiled::BUFFER_FORMAT_R16_UINT: data_view = m_texel_buffer_view_r16_uint; break; case TextureConversionShaderTiled::BUFFER_FORMAT_R32G32_UINT: data_view = m_texel_buffer_view_r32g32_uint; break; case TextureConversionShaderTiled::BUFFER_FORMAT_RGBA8_UINT: data_view = m_texel_buffer_view_rgba8_uint; break; default: break; } // Dispatch compute to temporary texture. ComputeShaderDispatcher dispatcher(command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_COMPUTE), iter->second.compute_shader); m_decoding_texture->TransitionToLayout(command_buffer, Texture2D::ComputeImageLayout::WriteOnly); dispatcher.SetPushConstants(&constants, sizeof(constants)); dispatcher.SetStorageImage(m_decoding_texture->GetView(), m_decoding_texture->GetLayout()); dispatcher.SetTexelBuffer(0, data_view); if (has_palette) dispatcher.SetTexelBuffer(1, m_texel_buffer_view_r16_uint); auto groups = TextureConversionShaderTiled::GetDispatchCount(iter->second.base_info, aligned_width, aligned_height); dispatcher.Dispatch(groups.first, groups.second, 1); // Copy from temporary texture to final destination. Texture2D* vulkan_tex_identifier = destination_texture->GetRawTexIdentifier(); m_decoding_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); vulkan_tex_identifier->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); VkImageCopy image_copy = {{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, {0, 0, 0}, {VK_IMAGE_ASPECT_COLOR_BIT, dst_level, 0, 1}, {0, 0, 0}, {width, height, 1}}; vkCmdCopyImage(command_buffer, m_decoding_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, vulkan_tex_identifier->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy); } bool TextureConverter::CreateTexelBuffer() { // Prefer an 8MB buffer if possible, but use less if the device doesn't support this. // This buffer is potentially going to be addressed as R8s in the future, so we assume // that one element is one byte. m_texel_buffer_size = std::min(TEXTURE_CONVERSION_TEXEL_BUFFER_SIZE, static_cast(g_vulkan_context->GetDeviceLimits().maxTexelBufferElements)); m_texel_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, m_texel_buffer_size, m_texel_buffer_size); if (!m_texel_buffer) return false; // Create views of the formats that we will be using. m_texel_buffer_view_r8_uint = CreateTexelBufferView(VK_FORMAT_R8_UINT); m_texel_buffer_view_r16_uint = CreateTexelBufferView(VK_FORMAT_R16_UINT); m_texel_buffer_view_r32g32_uint = CreateTexelBufferView(VK_FORMAT_R32G32_UINT); m_texel_buffer_view_rgba8_unorm = CreateTexelBufferView(VK_FORMAT_R8G8B8A8_UNORM); m_texel_buffer_view_rgba8_uint = CreateTexelBufferView(VK_FORMAT_R8G8B8A8_UINT); return m_texel_buffer_view_r8_uint != VK_NULL_HANDLE && m_texel_buffer_view_r16_uint != VK_NULL_HANDLE && m_texel_buffer_view_r32g32_uint != VK_NULL_HANDLE && m_texel_buffer_view_rgba8_unorm != VK_NULL_HANDLE && m_texel_buffer_view_rgba8_uint != VK_NULL_HANDLE; } VkBufferView TextureConverter::CreateTexelBufferView(VkFormat format) const { // Create a view of the whole buffer, we'll offset our texel load into it VkBufferViewCreateInfo view_info = { VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkBufferViewCreateFlags flags m_texel_buffer->GetBuffer(), // VkBuffer buffer format, // VkFormat format 0, // VkDeviceSize offset m_texel_buffer_size // VkDeviceSize range }; VkBufferView view; VkResult res = vkCreateBufferView(g_vulkan_context->GetDevice(), &view_info, nullptr, &view); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateBufferView failed: "); return VK_NULL_HANDLE; } return view; } bool TextureConverter::CompilePaletteConversionShaders() { static const char PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE[] = R"( layout(std140, push_constant) uniform PCBlock { float multiplier; int texture_buffer_offset; } PC; SAMPLER_BINDING(0) uniform sampler2DArray samp0; TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp1; layout(location = 0) in vec3 f_uv0; layout(location = 0) out vec4 ocol0; int Convert3To8(int v) { // Swizzle bits: 00000123 -> 12312312 return (v << 5) | (v << 2) | (v >> 1); } int Convert4To8(int v) { // Swizzle bits: 00001234 -> 12341234 return (v << 4) | v; } int Convert5To8(int v) { // Swizzle bits: 00012345 -> 12345123 return (v << 3) | (v >> 2); } int Convert6To8(int v) { // Swizzle bits: 00123456 -> 12345612 return (v << 2) | (v >> 4); } float4 DecodePixel_RGB5A3(int val) { int r,g,b,a; if ((val&0x8000) > 0) { r=Convert5To8((val>>10) & 0x1f); g=Convert5To8((val>>5 ) & 0x1f); b=Convert5To8((val ) & 0x1f); a=0xFF; } else { a=Convert3To8((val>>12) & 0x7); r=Convert4To8((val>>8 ) & 0xf); g=Convert4To8((val>>4 ) & 0xf); b=Convert4To8((val ) & 0xf); } return float4(r, g, b, a) / 255.0; } float4 DecodePixel_RGB565(int val) { int r, g, b, a; r = Convert5To8((val >> 11) & 0x1f); g = Convert6To8((val >> 5) & 0x3f); b = Convert5To8((val) & 0x1f); a = 0xFF; return float4(r, g, b, a) / 255.0; } float4 DecodePixel_IA8(int val) { int i = val & 0xFF; int a = val >> 8; return float4(i, i, i, a) / 255.0; } void main() { int src = int(round(texture(samp0, f_uv0).r * PC.multiplier)); src = int(texelFetch(samp1, src + PC.texture_buffer_offset).r); src = ((src << 8) & 0xFF00) | (src >> 8); ocol0 = DECODE(src); } )"; std::string palette_ia8_program = StringFromFormat("%s\n%s", "#define DECODE DecodePixel_IA8", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE); std::string palette_rgb565_program = StringFromFormat( "%s\n%s", "#define DECODE DecodePixel_RGB565", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE); std::string palette_rgb5a3_program = StringFromFormat( "%s\n%s", "#define DECODE DecodePixel_RGB5A3", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE); m_palette_conversion_shaders[static_cast(TLUTFormat::IA8)] = Util::CompileAndCreateFragmentShader(palette_ia8_program); m_palette_conversion_shaders[static_cast(TLUTFormat::RGB565)] = Util::CompileAndCreateFragmentShader(palette_rgb565_program); m_palette_conversion_shaders[static_cast(TLUTFormat::RGB5A3)] = Util::CompileAndCreateFragmentShader(palette_rgb5a3_program); return m_palette_conversion_shaders[static_cast(TLUTFormat::IA8)] != VK_NULL_HANDLE && m_palette_conversion_shaders[static_cast(TLUTFormat::RGB565)] != VK_NULL_HANDLE && m_palette_conversion_shaders[static_cast(TLUTFormat::RGB5A3)] != VK_NULL_HANDLE; } VkShaderModule TextureConverter::CompileEncodingShader(const EFBCopyParams& params) { const char* shader = TextureConversionShaderTiled::GenerateEncodingShader(params, APIType::Vulkan); VkShaderModule module = Util::CompileAndCreateFragmentShader(shader); if (module == VK_NULL_HANDLE) PanicAlert("Failed to compile texture encoding shader."); return module; } VkShaderModule TextureConverter::GetEncodingShader(const EFBCopyParams& params) { auto iter = m_encoding_shaders.find(params); if (iter != m_encoding_shaders.end()) return iter->second; VkShaderModule shader = CompileEncodingShader(params); m_encoding_shaders.emplace(params, shader); return shader; } bool TextureConverter::CreateEncodingRenderPass() { VkAttachmentDescription attachments[] = { {0, Util::GetVkFormatForHostTextureFormat(ENCODING_TEXTURE_FORMAT), VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}}; VkAttachmentReference color_attachment_references[] = { {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}}; VkSubpassDescription subpass_descriptions[] = {{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, color_attachment_references, nullptr, nullptr, 0, nullptr}}; VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, static_cast(ArraySize(attachments)), attachments, static_cast(ArraySize(subpass_descriptions)), subpass_descriptions, 0, nullptr}; VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &pass_info, nullptr, &m_encoding_render_pass); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateRenderPass (Encode) failed: "); return false; } return true; } bool TextureConverter::CreateEncodingTexture() { TextureConfig config(ENCODING_TEXTURE_WIDTH, ENCODING_TEXTURE_HEIGHT, 1, 1, ENCODING_TEXTURE_FORMAT, true); m_encoding_render_texture = g_renderer->CreateTexture(config); m_encoding_readback_texture = g_renderer->CreateStagingTexture(StagingTextureType::Readback, config); return m_encoding_render_texture && m_encoding_readback_texture; } bool TextureConverter::CreateDecodingTexture() { m_decoding_texture = Texture2D::Create( DECODING_TEXTURE_WIDTH, DECODING_TEXTURE_HEIGHT, 1, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT); if (!m_decoding_texture) return false; VkClearColorValue clear_value = {{0.0f, 0.0f, 0.0f, 1.0f}}; VkImageSubresourceRange clear_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}; m_decoding_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), m_decoding_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_value, 1, &clear_range); return true; } bool TextureConverter::CompileYUYVConversionShaders() { static const char RGB_TO_YUYV_SHADER_SOURCE[] = R"( SAMPLER_BINDING(0) uniform sampler2DArray source; layout(location = 0) in vec3 uv0; layout(location = 1) in vec4 col0; layout(location = 0) out vec4 ocol0; const vec3 y_const = vec3(0.257,0.504,0.098); const vec3 u_const = vec3(-0.148,-0.291,0.439); const vec3 v_const = vec3(0.439,-0.368,-0.071); const vec4 const3 = vec4(0.0625,0.5,0.0625,0.5); void main() { vec3 c0 = texture(source, vec3(uv0.xy - dFdx(uv0.xy) * 0.25, 0.0)).rgb; vec3 c1 = texture(source, vec3(uv0.xy + dFdx(uv0.xy) * 0.25, 0.0)).rgb; vec3 c01 = (c0 + c1) * 0.5; ocol0 = vec4(dot(c1, y_const), dot(c01,u_const), dot(c0,y_const), dot(c01, v_const)) + const3; } )"; static const char YUYV_TO_RGB_SHADER_SOURCE[] = R"( layout(std140, push_constant) uniform PCBlock { int buffer_offset; int src_stride; } PC; TEXEL_BUFFER_BINDING(0) uniform samplerBuffer source; layout(location = 0) in vec3 uv0; layout(location = 0) out vec4 ocol0; void main() { ivec2 uv = ivec2(gl_FragCoord.xy); int buffer_pos = PC.buffer_offset + uv.y * PC.src_stride + (uv.x / 2); vec4 c0 = texelFetch(source, buffer_pos); float y = mix(c0.r, c0.b, (uv.x & 1) == 1); float yComp = 1.164 * (y - 0.0625); float uComp = c0.g - 0.5; float vComp = c0.a - 0.5; ocol0 = vec4(yComp + (1.596 * vComp), yComp - (0.813 * vComp) - (0.391 * uComp), yComp + (2.018 * uComp), 1.0); } )"; std::string header = g_shader_cache->GetUtilityShaderHeader(); std::string source = header + RGB_TO_YUYV_SHADER_SOURCE; m_rgb_to_yuyv_shader = Util::CompileAndCreateFragmentShader(source); source = header + YUYV_TO_RGB_SHADER_SOURCE; m_yuyv_to_rgb_shader = Util::CompileAndCreateFragmentShader(source); return m_rgb_to_yuyv_shader != VK_NULL_HANDLE && m_yuyv_to_rgb_shader != VK_NULL_HANDLE; } } // namespace Vulkan