// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include #include "Common.h" #include "Config.h" #include "Profiler.h" #include "MemoryUtil.h" #include "StringUtil.h" #include "x64Emitter.h" #include "ABI.h" #include "LookUpTables.h" #include "Statistics.h" #include "VertexManager.h" #include "VertexLoaderManager.h" #include "VertexShaderManager.h" #include "VertexManager.h" #include "VertexLoader.h" #include "BPStructs.h" #include "DataReader.h" #include "VertexLoader_Position.h" #include "VertexLoader_Normal.h" #include "VertexLoader_Color.h" #include "VertexLoader_TextCoord.h" #define USE_JIT #define COMPILED_CODE_SIZE 4096*4 NativeVertexFormat *g_nativeVertexFmt; //these don't need to be saved #ifndef _WIN32 #undef inline #define inline #endif // Direct // ============================================================================== static u8 s_curposmtx; static u8 s_curtexmtx[8]; static int s_texmtxwrite = 0; static int s_texmtxread = 0; static int loop_counter; // Vertex loaders read these. Although the scale ones should be baked into the shader. int tcIndex; int colIndex; TVtxAttr* pVtxAttr; int colElements[2]; float posScale; float tcScale[8]; using namespace Gen; void LOADERDECL PosMtx_ReadDirect_UByte() { s_curposmtx = DataReadU8() & 0x3f; PRIM_LOG("posmtx: %d, ", s_curposmtx); } void LOADERDECL PosMtx_Write() { *VertexManager::s_pCurBufferPointer++ = s_curposmtx; *VertexManager::s_pCurBufferPointer++ = 0; *VertexManager::s_pCurBufferPointer++ = 0; *VertexManager::s_pCurBufferPointer++ = 0; } void LOADERDECL TexMtx_ReadDirect_UByte() { s_curtexmtx[s_texmtxread] = DataReadU8()&0x3f; PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]); s_texmtxread++; } void LOADERDECL TexMtx_Write_Float() { *(float*)VertexManager::s_pCurBufferPointer = (float)s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 4; } void LOADERDECL TexMtx_Write_Float2() { ((float*)VertexManager::s_pCurBufferPointer)[0] = 0; ((float*)VertexManager::s_pCurBufferPointer)[1] = (float)s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 8; } void LOADERDECL TexMtx_Write_Short3() { ((s16*)VertexManager::s_pCurBufferPointer)[0] = 0; ((s16*)VertexManager::s_pCurBufferPointer)[1] = 0; ((s16*)VertexManager::s_pCurBufferPointer)[2] = s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 8; } VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr) { m_numLoadedVertices = 0; m_VertexSize = 0; m_numPipelineStages = 0; m_NativeFmt = new NativeVertexFormat(); loop_counter = 0; VertexLoader_Normal::Init(); m_VtxDesc = vtx_desc; SetVAT(vtx_attr.g0.Hex, vtx_attr.g1.Hex, vtx_attr.g2.Hex); m_compiledCode = (u8 *)AllocateExecutableMemory(COMPILED_CODE_SIZE, false); if (m_compiledCode) { memset(m_compiledCode, 0, COMPILED_CODE_SIZE); } CompileVertexTranslator(); } VertexLoader::~VertexLoader() { FreeMemoryPages(m_compiledCode, COMPILED_CODE_SIZE); delete m_NativeFmt; } void VertexLoader::CompileVertexTranslator() { m_VertexSize = 0; const TVtxAttr &vtx_attr = m_VtxAttr; const TVtxDesc &vtx_desc = m_VtxDesc; #ifdef USE_JIT u8 *old_code_ptr = GetWritableCodePtr(); SetCodePtr(m_compiledCode); ABI_EmitPrologue(4); MOV(32, R(EBX), M(&loop_counter)); // Start loop here const u8 *loop_start = GetCodePtr(); // Reset component counters if present in vertex format only. if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord || m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord) { MOV(32, M(&tcIndex), Imm32(0)); } if (m_VtxDesc.Color0 || m_VtxDesc.Color1) { MOV(32, M(&colIndex), Imm32(0)); } if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx || m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx) { MOV(32, M(&s_texmtxwrite), Imm32(0)); MOV(32, M(&s_texmtxread), Imm32(0)); } #endif // Colors const int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; // TextureCoord // Since m_VtxDesc.Text7Coord is broken across a 32 bit word boundary, retrieve its value manually. // If we didn't do this, the vertex format would be read as one bit offset from where it should be, making // 01 become 00, and 10/11 become 01 const int tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, (m_VtxDesc.Hex >> 31) & 3 }; // Reset pipeline m_numPipelineStages = 0; // It's a bit ugly that we poke inside m_NativeFmt in this function. Planning to fix this. m_NativeFmt->m_components = 0; // Position in pc vertex format. int nat_offset = 0; PortableVertexDeclaration vtx_decl; memset(&vtx_decl, 0, sizeof(vtx_decl)); for (int i = 0; i < 8; i++) { vtx_decl.texcoord_offset[i] = -1; } // m_VBVertexStride for texmtx and posmtx is computed later when writing. // Position Matrix Index if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_ReadDirect_UByte); m_NativeFmt->m_components |= VB_HAS_POSMTXIDX; m_VertexSize += 1; } if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); } // Position if (m_VtxDesc.Position != NOT_PRESENT) { nat_offset += 12; } switch (m_VtxDesc.Position) { case NOT_PRESENT: {_assert_msg_(0, "Vertex descriptor without position!", "WTF?");} break; case DIRECT: { switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: m_VertexSize += m_VtxAttr.PosElements?3:2; WriteCall(Pos_ReadDirect_UByte); break; case FORMAT_BYTE: m_VertexSize += m_VtxAttr.PosElements?3:2; WriteCall(Pos_ReadDirect_Byte); break; case FORMAT_USHORT: m_VertexSize += m_VtxAttr.PosElements?6:4; WriteCall(Pos_ReadDirect_UShort); break; case FORMAT_SHORT: m_VertexSize += m_VtxAttr.PosElements?6:4; WriteCall(Pos_ReadDirect_Short); break; case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.PosElements?12:8; WriteCall(Pos_ReadDirect_Float); break; default: _assert_(0); break; } } break; case INDEX8: switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: WriteCall(Pos_ReadIndex8_UByte); break; //WTF? case FORMAT_BYTE: WriteCall(Pos_ReadIndex8_Byte); break; case FORMAT_USHORT: WriteCall(Pos_ReadIndex8_UShort); break; case FORMAT_SHORT: WriteCall(Pos_ReadIndex8_Short); break; case FORMAT_FLOAT: WriteCall(Pos_ReadIndex8_Float); break; default: _assert_(0); break; } m_VertexSize += 1; break; case INDEX16: switch (m_VtxAttr.PosFormat) { case FORMAT_UBYTE: WriteCall(Pos_ReadIndex16_UByte); break; case FORMAT_BYTE: WriteCall(Pos_ReadIndex16_Byte); break; case FORMAT_USHORT: WriteCall(Pos_ReadIndex16_UShort); break; case FORMAT_SHORT: WriteCall(Pos_ReadIndex16_Short); break; case FORMAT_FLOAT: WriteCall(Pos_ReadIndex16_Float); break; default: _assert_(0); break; } m_VertexSize += 2; break; } // Normals vtx_decl.num_normals = 0; if (m_VtxDesc.Normal != NOT_PRESENT) { m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); if (pFunc == 0) { char temp[256]; sprintf(temp,"%i %i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); g_VideoInitialize.pSysMessage("VertexLoader_Normal::GetFunction returned zero!"); } WriteCall(pFunc); vtx_decl.num_normals = vtx_attr.NormalElements ? 3 : 1; switch (vtx_attr.NormalFormat) { case FORMAT_UBYTE: case FORMAT_BYTE: vtx_decl.normal_gl_type = VAR_BYTE; vtx_decl.normal_gl_size = 4; vtx_decl.normal_offset[0] = nat_offset; nat_offset += 4; if (vtx_attr.NormalElements) { vtx_decl.normal_offset[1] = nat_offset; nat_offset += 4; vtx_decl.normal_offset[2] = nat_offset; nat_offset += 4; } break; case FORMAT_USHORT: case FORMAT_SHORT: vtx_decl.normal_gl_type = VAR_SHORT; vtx_decl.normal_gl_size = 4; vtx_decl.normal_offset[0] = nat_offset; nat_offset += 8; if (vtx_attr.NormalElements) { vtx_decl.normal_offset[1] = nat_offset; nat_offset += 8; vtx_decl.normal_offset[2] = nat_offset; nat_offset += 8; } break; case FORMAT_FLOAT: vtx_decl.normal_gl_type = VAR_FLOAT; vtx_decl.normal_gl_size = 3; vtx_decl.normal_offset[0] = nat_offset; nat_offset += 12; if (vtx_attr.NormalElements) { vtx_decl.normal_offset[1] = nat_offset; nat_offset += 12; vtx_decl.normal_offset[2] = nat_offset; nat_offset += 12; } break; default: _assert_(0); break; } int numNormals = (m_VtxAttr.NormalElements == 1) ? NRM_THREE : NRM_ONE; m_NativeFmt->m_components |= VB_HAS_NRM0; if (numNormals == NRM_THREE) m_NativeFmt->m_components |= VB_HAS_NRM1 | VB_HAS_NRM2; } vtx_decl.color_gl_type = VAR_UNSIGNED_BYTE; for (int i = 0; i < 2; i++) { m_NativeFmt->m_components |= VB_HAS_COL0 << i; switch (col[i]) { case NOT_PRESENT: m_NativeFmt->m_components &= ~(VB_HAS_COL0 << i); break; case DIRECT: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadDirect_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadDirect_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadDirect_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadDirect_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadDirect_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadDirect_32b_8888); break; default: _assert_(0); break; } switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: m_VertexSize += 2; break; case FORMAT_24B_888: m_VertexSize += 3; break; case FORMAT_32B_888x: m_VertexSize += 4; break; case FORMAT_16B_4444: m_VertexSize += 2; break; case FORMAT_24B_6666: m_VertexSize += 3; break; case FORMAT_32B_8888: m_VertexSize += 4; break; default: _assert_(0); break; } break; case INDEX8: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break; default: _assert_(0); break; } m_VertexSize += 1; break; case INDEX16: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break; default: _assert_(0); break; } m_VertexSize += 2; break; } if (col[i] != NOT_PRESENT) { vtx_decl.color_offset[i] = nat_offset; nat_offset += 4; } else { vtx_decl.color_offset[i] = -1; } } // Texture matrix indices (remove if corresponding texture coordinate isn't enabled) for (int i = 0; i < 8; i++) { m_NativeFmt->m_components |= VB_HAS_UV0 << i; int elements = m_VtxAttr.texCoord[i].Elements; switch (tc[i]) { case NOT_PRESENT: m_NativeFmt->m_components &= ~(VB_HAS_UV0 << i); break; case DIRECT: switch (m_VtxAttr.texCoord[i].Format) { case FORMAT_UBYTE: m_VertexSize += elements?2:1; WriteCall(elements?TexCoord_ReadDirect_UByte2:TexCoord_ReadDirect_UByte1); break; case FORMAT_BYTE: m_VertexSize += elements?2:1; WriteCall(elements?TexCoord_ReadDirect_Byte2:TexCoord_ReadDirect_Byte1); break; case FORMAT_USHORT: m_VertexSize += elements?4:2; WriteCall(elements?TexCoord_ReadDirect_UShort2:TexCoord_ReadDirect_UShort1); break; case FORMAT_SHORT: m_VertexSize += elements?4:2; WriteCall(elements?TexCoord_ReadDirect_Short2:TexCoord_ReadDirect_Short1); break; case FORMAT_FLOAT: m_VertexSize += elements?8:4; WriteCall(elements?TexCoord_ReadDirect_Float2:TexCoord_ReadDirect_Float1); break; default: _assert_(0); break; } break; case INDEX8: m_VertexSize += 1; switch (m_VtxAttr.texCoord[i].Format) { case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex8_UByte2:TexCoord_ReadIndex8_UByte1); break; case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex8_Byte2:TexCoord_ReadIndex8_Byte1); break; case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex8_UShort2:TexCoord_ReadIndex8_UShort1); break; case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex8_Short2:TexCoord_ReadIndex8_Short1); break; case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex8_Float2:TexCoord_ReadIndex8_Float1); break; default: _assert_(0); break; } break; case INDEX16: m_VertexSize += 2; switch (m_VtxAttr.texCoord[i].Format) { case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex16_UByte2:TexCoord_ReadIndex16_UByte1); break; case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex16_Byte2:TexCoord_ReadIndex16_Byte1); break; case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex16_UShort2:TexCoord_ReadIndex16_UShort1); break; case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex16_Short2:TexCoord_ReadIndex16_Short1); break; case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex16_Float2:TexCoord_ReadIndex16_Float1); break; default: _assert_(0); } break; } if (m_NativeFmt->m_components & (VB_HAS_TEXMTXIDX0 << i)) { if (tc[i] != NOT_PRESENT) { // if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index vtx_decl.texcoord_offset[i] = nat_offset; vtx_decl.texcoord_gl_type[i] = VAR_FLOAT; vtx_decl.texcoord_size[i] = 3; nat_offset += 12; WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2); } else { m_NativeFmt->m_components |= VB_HAS_UV0 << i; // have to include since using now vtx_decl.texcoord_offset[i] = nat_offset; vtx_decl.texcoord_gl_type[i] = VAR_SHORT; vtx_decl.texcoord_size[i] = 4; nat_offset += 8; // still include the texture coordinate, but this time as 6 + 2 bytes WriteCall(TexMtx_Write_Short3); } } else { if (tc[i] != NOT_PRESENT) { vtx_decl.texcoord_offset[i] = nat_offset; vtx_decl.texcoord_gl_type[i] = VAR_FLOAT; vtx_decl.texcoord_size[i] = vtx_attr.texCoord[i].Elements ? 2 : 1; nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1); } else { vtx_decl.texcoord_offset[i] = -1; } } if (tc[i] == NOT_PRESENT) { // if there's more tex coords later, have to write a dummy call int j = i + 1; for (; j < 8; ++j) { if (tc[j] != NOT_PRESENT) { WriteCall(TexCoord_Read_Dummy); // important to get indices right! break; } } // tricky! if (j == 8 && !((m_NativeFmt->m_components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1)))) { // no more tex coords and tex matrices, so exit loop break; } } } if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_Write); vtx_decl.posmtx_offset = nat_offset; nat_offset += 4; } else { vtx_decl.posmtx_offset = -1; } native_stride = nat_offset; vtx_decl.stride = native_stride; #ifdef USE_JIT // End loop here SUB(32, R(EBX), Imm8(1)); J_CC(CC_NZ, loop_start, true); ABI_EmitEpilogue(4); SetCodePtr(old_code_ptr); #endif m_NativeFmt->Initialize(vtx_decl); } void VertexLoader::WriteCall(TPipelineFunction func) { #ifdef USE_JIT CALL((void*)func); #else m_PipelineStages[m_numPipelineStages++] = func; #endif } void VertexLoader::RunVertices(int vtx_attr_group, int primitive, int count) { DVSTARTPROFILE(); m_numLoadedVertices += count; // Flush if our vertex format is different from the currently set. if (g_nativeVertexFmt != NULL && g_nativeVertexFmt != m_NativeFmt) { VertexManager::Flush(); // Also move the Set() here? } g_nativeVertexFmt = m_NativeFmt; if (bpmem.genMode.cullmode == 3 && primitive < 5) { // if cull mode is none, ignore triangles and quads DataSkip(count * m_VertexSize); return; } VertexManager::EnableComponents(m_NativeFmt->m_components); // Load position and texcoord scale factors. // TODO - figure out if we should leave these independent, or compile them into // the vertexloaders. m_VtxAttr.PosFrac = g_VtxAttr[vtx_attr_group].g0.PosFrac; m_VtxAttr.texCoord[0].Frac = g_VtxAttr[vtx_attr_group].g0.Tex0Frac; m_VtxAttr.texCoord[1].Frac = g_VtxAttr[vtx_attr_group].g1.Tex1Frac; m_VtxAttr.texCoord[2].Frac = g_VtxAttr[vtx_attr_group].g1.Tex2Frac; m_VtxAttr.texCoord[3].Frac = g_VtxAttr[vtx_attr_group].g1.Tex3Frac; m_VtxAttr.texCoord[4].Frac = g_VtxAttr[vtx_attr_group].g2.Tex4Frac; m_VtxAttr.texCoord[5].Frac = g_VtxAttr[vtx_attr_group].g2.Tex5Frac; m_VtxAttr.texCoord[6].Frac = g_VtxAttr[vtx_attr_group].g2.Tex6Frac; m_VtxAttr.texCoord[7].Frac = g_VtxAttr[vtx_attr_group].g2.Tex7Frac; pVtxAttr = &m_VtxAttr; posScale = shiftLookup[m_VtxAttr.PosFrac]; if (m_NativeFmt->m_components & VB_HAS_UVALL) { for (int i = 0; i < 8; i++) tcScale[i] = shiftLookup[m_VtxAttr.texCoord[i].Frac]; } for (int i = 0; i < 2; i++) colElements[i] = m_VtxAttr.color[i].Elements; // if strips or fans, make sure all vertices can fit in buffer, otherwise flush int granularity = 1; switch (primitive) { case 3: // strip .. hm, weird case 4: // fan if (VertexManager::GetRemainingSize() < 3 * native_stride) VertexManager::Flush(); break; case 6: // line strip if (VertexManager::GetRemainingSize() < 2 * native_stride) VertexManager::Flush(); break; case 0: granularity = 4; break; // quads case 2: granularity = 3; break; // tris case 5: granularity = 2; break; // lines } int startv = 0, extraverts = 0; int v = 0; while (v < count) { int remainingVerts = VertexManager::GetRemainingSize() / native_stride; if (remainingVerts < granularity) { INCSTAT(stats.thisFrame.numBufferSplits); // This buffer full - break current primitive and flush, to switch to the next buffer. u8* plastptr = VertexManager::s_pCurBufferPointer; if (v - startv > 0) VertexManager::AddVertices(primitive, v - startv + extraverts); VertexManager::Flush(); // Why does this need to be so complicated? switch (primitive) { case 3: // triangle strip, copy last two vertices // a little trick since we have to keep track of signs if (v & 1) { memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-2*native_stride, native_stride); memcpy_gc(VertexManager::s_pCurBufferPointer+native_stride, plastptr-native_stride*2, 2*native_stride); VertexManager::s_pCurBufferPointer += native_stride*3; extraverts = 3; } else { memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride*2, native_stride*2); VertexManager::s_pCurBufferPointer += native_stride*2; extraverts = 2; } break; case 4: // tri fan, copy first and last vert memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride*(v-startv+extraverts), native_stride); VertexManager::s_pCurBufferPointer += native_stride; memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride, native_stride); VertexManager::s_pCurBufferPointer += native_stride; extraverts = 2; break; case 6: // line strip memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride, native_stride); VertexManager::s_pCurBufferPointer += native_stride; extraverts = 1; break; default: extraverts = 0; break; } startv = v; } int remainingPrims = remainingVerts / granularity; remainingVerts = remainingPrims * granularity; if (count - v < remainingVerts) remainingVerts = count - v; // Clean tight loader loop. Todo - build the loop into the JIT code. #ifdef USE_JIT if (remainingVerts > 0) { loop_counter = remainingVerts; ((void (*)())(void*)m_compiledCode)(); } #else for (int s = 0; s < remainingVerts; s++) { tcIndex = 0; colIndex = 0; s_texmtxwrite = s_texmtxread = 0; for (int i = 0; i < m_numPipelineStages; i++) m_PipelineStages[i](); PRIM_LOG("\n"); } #endif v += remainingVerts; } if (startv < count) VertexManager::AddVertices(primitive, count - startv + extraverts); } void VertexLoader::SetVAT(u32 _group0, u32 _group1, u32 _group2) { VAT vat; vat.g0.Hex = _group0; vat.g1.Hex = _group1; vat.g2.Hex = _group2; m_VtxAttr.PosElements = vat.g0.PosElements; m_VtxAttr.PosFormat = vat.g0.PosFormat; m_VtxAttr.PosFrac = vat.g0.PosFrac; m_VtxAttr.NormalElements = vat.g0.NormalElements; m_VtxAttr.NormalFormat = vat.g0.NormalFormat; m_VtxAttr.color[0].Elements = vat.g0.Color0Elements; m_VtxAttr.color[0].Comp = vat.g0.Color0Comp; m_VtxAttr.color[1].Elements = vat.g0.Color1Elements; m_VtxAttr.color[1].Comp = vat.g0.Color1Comp; m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements; m_VtxAttr.texCoord[0].Format = vat.g0.Tex0CoordFormat; m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac; m_VtxAttr.ByteDequant = vat.g0.ByteDequant; m_VtxAttr.NormalIndex3 = vat.g0.NormalIndex3; m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements; m_VtxAttr.texCoord[1].Format = vat.g1.Tex1CoordFormat; m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac; m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements; m_VtxAttr.texCoord[2].Format = vat.g1.Tex2CoordFormat; m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac; m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements; m_VtxAttr.texCoord[3].Format = vat.g1.Tex3CoordFormat; m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac; m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements; m_VtxAttr.texCoord[4].Format = vat.g1.Tex4CoordFormat; m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac; m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements; m_VtxAttr.texCoord[5].Format = vat.g2.Tex5CoordFormat; m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac; m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements; m_VtxAttr.texCoord[6].Format = vat.g2.Tex6CoordFormat; m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac; m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements; m_VtxAttr.texCoord[7].Format = vat.g2.Tex7CoordFormat; m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac; }; void VertexLoader::AppendToString(std::string *dest) { static const char *posMode[4] = { "Invalid", "Direct", "Idx8", "Idx16", }; static const char *posFormats[5] = { "u8", "s8", "u16", "s16", "flt", }; dest->append(StringFromFormat("sz: %i skin: %i Pos: %i %s %s Nrm: %i %s %s - %i vtx\n", m_VertexSize, m_VtxDesc.PosMatIdx, m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat], m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat], m_numLoadedVertices)); }