// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #ifndef _DOLPHIN_INTEL_CODEGEN #define _DOLPHIN_INTEL_CODEGEN #include "Common.h" namespace Gen { enum X64Reg { EAX = 0, EBX = 3, ECX = 1, EDX = 2, ESI = 6, EDI = 7, EBP = 5, ESP = 4, RAX = 0, RBX = 3, RCX = 1, RDX = 2, RSI = 6, RDI = 7, RBP = 5, RSP = 4, R8 = 8, R9 = 9, R10 = 10,R11 = 11, R12 = 12,R13 = 13,R14 = 14,R15 = 15, AL = 0, BL = 3, CL = 1, DL = 2, AH = 4, BH = 7, CH = 5, DH = 6, AX = 0, BX = 3, CX = 1, DX = 2, SI = 6, DI = 7, BP = 5, SP = 4, XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, INVALID_REG = 0xFFFFFFFF }; enum CCFlags { CC_O = 0, CC_NO = 1, CC_B = 2, CC_C = 2, CC_NAE = 2, CC_NB = 3, CC_NC = 3, CC_AE = 3, CC_Z = 4, CC_E = 4, CC_NZ = 5, CC_NE = 5, CC_BE = 6, CC_NA = 6, CC_NBE = 7, CC_A = 7, CC_S = 8, CC_NS = 9, CC_P = 0xA, CC_PE = 0xA, CC_NP = 0xB, CC_PO = 0xB, CC_L = 0xC, CC_NGE = 0xC, CC_NL = 0xD, CC_GE = 0xD, CC_LE = 0xE, CC_NG = 0xE, CC_NLE = 0xF, CC_G = 0xF }; enum { NUMGPRs = 16, NUMXMMs = 16, }; enum { SCALE_NONE = 0, SCALE_1 = 1, SCALE_2 = 2, SCALE_4 = 4, SCALE_8 = 8, SCALE_ATREG = 16, SCALE_RIP = 0xFF, SCALE_IMM8 = 0xF0, SCALE_IMM16 = 0xF1, SCALE_IMM32 = 0xF2, SCALE_IMM64 = 0xF3, }; void SetCodePtr(u8 *ptr); void ReserveCodeSpace(int bytes); const u8 *AlignCode4(); const u8 *AlignCode16(); const u8 *AlignCodePage(); const u8 *GetCodePtr(); u8 *GetWritableCodePtr(); enum NormalOp { nrmADD, nrmADC, nrmSUB, nrmSBB, nrmAND, nrmOR , nrmXOR, nrmMOV, nrmTEST, nrmCMP, nrmXCHG, }; // Make the generation routine examine which direction to go // probably has to be a static // RIP addressing does not benefit from micro op fusion on Core arch struct OpArg { OpArg() {} //dummy op arg, used for storage OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX) { operandReg = 0; scale = (u8)_scale; offsetOrBaseReg = (u8)rmReg; indexReg = (u8)scaledReg; //if scale == 0 never mind offseting offset = _offset; } void WriteRex(bool op64, int customOp = -1) const; void WriteRest(int extraBytes=0, X64Reg operandReg=(X64Reg)0xFF) const; void WriteSingleByteOp(u8 op, X64Reg operandReg, int bits); //This one is public - must be written to u64 offset; //use RIP-relative as much as possible - avoid 64-bit immediates at all costs u8 operandReg; void WriteNormalOp(bool toRM, NormalOp op, const OpArg &operand, int bits) const; bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;} bool IsSimpleReg() const {return scale == SCALE_NONE;} bool IsSimpleReg(X64Reg reg) const { if (!IsSimpleReg()) return false; return GetSimpleReg() == reg; } bool CanDoOpWith(OpArg &other) const { if (IsSimpleReg()) return true; if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false; return true; } int GetImmBits() const { switch (scale) { case SCALE_IMM8: return 8; case SCALE_IMM16: return 16; case SCALE_IMM32: return 32; case SCALE_IMM64: return 64; default: return -1; } } X64Reg GetSimpleReg() const { if (scale == SCALE_NONE) return (X64Reg)offsetOrBaseReg; else return INVALID_REG; } private: u8 scale; u8 offsetOrBaseReg; u8 indexReg; }; inline OpArg M(void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);} inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);} inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);} inline OpArg MDisp(X64Reg value, int offset) { return OpArg((u32)offset, SCALE_ATREG, value); } inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) { return OpArg(offset, scale, base, scaled); } inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);} inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);} inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);} #ifdef _M_X64 inline OpArg ImmPtr(void* imm) {return Imm64((u64)imm);} #else inline OpArg ImmPtr(void* imm) {return Imm32((u32)imm);} #endif void INT3(); void NOP(int count = 1); //nop padding - TODO: fast nop slides, for amd and intel (check their manuals) void PAUSE(); void RET(); void STC(); void CLC(); void CMC(); void PUSH(X64Reg reg); void POP(X64Reg reg); void PUSH(int bits, const OpArg ®); void POP(int bits, const OpArg ®); void PUSHF(); void POPF(); typedef const u8* JumpTarget; struct FixupBranch { u8 *ptr; int type; //0 = 8bit 1 = 32bit }; FixupBranch J(bool force5bytes = false); void JMP(const u8 * addr, bool force5Bytes = false); void JMP(OpArg arg); void JMPptr(const OpArg &arg); void JMPself(); //infinite loop! void CALL(void *fnptr); void CALLptr(OpArg arg); FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false); void J_CC(CCFlags conditionCode, JumpTarget target); void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false); void SetJumpTarget(const FixupBranch &branch); //WARNING - INC and DEC slow on Intel Core, but not on AMD, since it creates //false flags dependencies because they only update a subset of the flags // ector - I hereby BAN inc and dec due to their horribleness :P // void INC(int bits, OpArg arg); // void DEC(int bits, OpArg arg); void SETcc(CCFlags flag, OpArg dest); // Note: CMOV brings small if any benefit on current cpus, unfortunately. void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag); void LFENCE(); void MFENCE(); void SFENCE(); void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit //These two can not be executed on early Intel 64-bit CPU:s, only on AMD! void LAHF(); // 3 cycle vector path void SAHF(); // direct path fast //Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU //LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr., //Actually REP MOVSD could be useful :P void MOVNTI(int bits, OpArg dest, X64Reg src); void MUL(int bits, OpArg src); //UNSIGNED void DIV(int bits, OpArg src); void IMUL(int bits, OpArg src); //SIGNED void IDIV(int bits, OpArg src); //TODO: alternate IMUL forms void NEG(int bits, OpArg src); void NOT(int bits, OpArg src); void ROL(int bits, OpArg dest, OpArg shift); void ROR(int bits, OpArg dest, OpArg shift); void RCL(int bits, OpArg dest, OpArg shift); void RCR(int bits, OpArg dest, OpArg shift); void SHL(int bits, OpArg dest, OpArg shift); void SHR(int bits, OpArg dest, OpArg shift); void SAR(int bits, OpArg dest, OpArg shift); void CWD(int bits = 16); inline void CDQ() {CWD(32);} inline void CQO() {CWD(64);} void CBW(int bits = 8); inline void CWDE() {CBW(16);} inline void CDQE() {CBW(32);} void LEA(int bits, X64Reg dest, OpArg src); enum PrefetchLevel { PF_NTA, //Non-temporal (data used once and only once) PF_T0, //All cache levels PF_T1, //Levels 2+ (aliased to T0 on AMD) PF_T2, //Levels 3+ (aliased to T0 on AMD) }; void PREFETCH(PrefetchLevel level, OpArg arg); void ADD (int bits, const OpArg &a1, const OpArg &a2); void ADC (int bits, const OpArg &a1, const OpArg &a2); void SUB (int bits, const OpArg &a1, const OpArg &a2); void SBB (int bits, const OpArg &a1, const OpArg &a2); void AND (int bits, const OpArg &a1, const OpArg &a2); void OR (int bits, const OpArg &a1, const OpArg &a2); void XOR (int bits, const OpArg &a1, const OpArg &a2); void MOV (int bits, const OpArg &a1, const OpArg &a2); void TEST(int bits, const OpArg &a1, const OpArg &a2); void CMP (int bits, const OpArg &a1, const OpArg &a2); // XCHG is SLOW and should be avoided. //void XCHG(int bits, const OpArg &a1, const OpArg &a2); void XCHG_AHAL(); void BSWAP(int bits, X64Reg reg); void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src); enum SSECompare { EQ = 0, LT, LE, UNORD, NEQ, NLT, NLE, ORD, }; // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64) void STMXCSR(OpArg memloc); void LDMXCSR(OpArg memloc); // Regular SSE/SSE2 instructions void ADDSS(X64Reg regOp, OpArg arg); void ADDSD(X64Reg regOp, OpArg arg); void SUBSS(X64Reg regOp, OpArg arg); void SUBSD(X64Reg regOp, OpArg arg); void CMPSS(X64Reg regOp, OpArg arg, u8 compare); void CMPSD(X64Reg regOp, OpArg arg, u8 compare); void ANDSS(X64Reg regOp, OpArg arg); void ANDSD(X64Reg regOp, OpArg arg); void ANDNSS(X64Reg regOp, OpArg arg); void ANDNSD(X64Reg regOp, OpArg arg); void ORSS(X64Reg regOp, OpArg arg); void ORSD(X64Reg regOp, OpArg arg); void XORSS(X64Reg regOp, OpArg arg); void XORSD(X64Reg regOp, OpArg arg); void MULSS(X64Reg regOp, OpArg arg); void MULSD(X64Reg regOp, OpArg arg); void DIVSS(X64Reg regOp, OpArg arg); void DIVSD(X64Reg regOp, OpArg arg); void MINSS(X64Reg regOp, OpArg arg); void MINSD(X64Reg regOp, OpArg arg); void MAXSS(X64Reg regOp, OpArg arg); void MAXSD(X64Reg regOp, OpArg arg); void SQRTSS(X64Reg regOp, OpArg arg); void SQRTSD(X64Reg regOp, OpArg arg); void RSQRTSS(X64Reg regOp, OpArg arg); void RSQRTSD(X64Reg regOp, OpArg arg); void COMISS(X64Reg regOp, OpArg arg); void COMISD(X64Reg regOp, OpArg arg); void ADDPS(X64Reg regOp, OpArg arg); void ADDPD(X64Reg regOp, OpArg arg); void SUBPS(X64Reg regOp, OpArg arg); void SUBPD(X64Reg regOp, OpArg arg); void CMPPS(X64Reg regOp, OpArg arg, u8 compare); void CMPPD(X64Reg regOp, OpArg arg, u8 compare); void ANDPS(X64Reg regOp, OpArg arg); void ANDPD(X64Reg regOp, OpArg arg); void ANDNPS(X64Reg regOp, OpArg arg); void ANDNPD(X64Reg regOp, OpArg arg); void ORPS(X64Reg regOp, OpArg arg); void ORPD(X64Reg regOp, OpArg arg); void XORPS(X64Reg regOp, OpArg arg); void XORPD(X64Reg regOp, OpArg arg); void MULPS(X64Reg regOp, OpArg arg); void MULPD(X64Reg regOp, OpArg arg); void DIVPS(X64Reg regOp, OpArg arg); void DIVPD(X64Reg regOp, OpArg arg); void MINPS(X64Reg regOp, OpArg arg); void MINPD(X64Reg regOp, OpArg arg); void MAXPS(X64Reg regOp, OpArg arg); void MAXPD(X64Reg regOp, OpArg arg); void SQRTPS(X64Reg regOp, OpArg arg); void SQRTPD(X64Reg regOp, OpArg arg); void RSQRTPS(X64Reg regOp, OpArg arg); void RSQRTPD(X64Reg regOp, OpArg arg); void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle); void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle); void MOVDDUP(X64Reg regOp, OpArg arg); void COMISS(X64Reg regOp, OpArg arg); void COMISD(X64Reg regOp, OpArg arg); void UCOMISS(X64Reg regOp, OpArg arg); void UCOMISD(X64Reg regOp, OpArg arg); void MOVAPS(X64Reg regOp, OpArg arg); void MOVAPD(X64Reg regOp, OpArg arg); void MOVAPS(OpArg arg, X64Reg regOp); void MOVAPD(OpArg arg, X64Reg regOp); void MOVUPS(X64Reg regOp, OpArg arg); void MOVUPD(X64Reg regOp, OpArg arg); void MOVUPS(OpArg arg, X64Reg regOp); void MOVUPD(OpArg arg, X64Reg regOp); void MOVSS(X64Reg regOp, OpArg arg); void MOVSD(X64Reg regOp, OpArg arg); void MOVSS(OpArg arg, X64Reg regOp); void MOVSD(OpArg arg, X64Reg regOp); void MOVMSKPS(X64Reg dest, OpArg arg); void MOVMSKPD(X64Reg dest, OpArg arg); void MOVD_xmm(X64Reg dest, const OpArg &arg); void MOVQ_xmm(X64Reg dest, const OpArg &arg); void MOVD_xmm(const OpArg &arg, X64Reg src); void MOVQ_xmm(const OpArg &arg, X64Reg src); void MASKMOVDQU(X64Reg dest, X64Reg src); void LDDQU(X64Reg dest, OpArg src); void UNPCKLPD(X64Reg dest, OpArg src); void UNPCKHPD(X64Reg dest, OpArg src); void CVTPS2PD(X64Reg dest, OpArg src); void CVTPD2PS(X64Reg dest, OpArg src); void CVTSS2SD(X64Reg dest, OpArg src); void CVTSD2SS(X64Reg dest, OpArg src); void CVTSD2SI(X64Reg dest, OpArg src); void CVTDQ2PD(X64Reg regOp, OpArg arg); void CVTPD2DQ(X64Reg regOp, OpArg arg); void CVTDQ2PS(X64Reg regOp, const OpArg &arg); //Integer SSE instructions void PACKSSDW(X64Reg dest, OpArg arg); void PACKSSWB(X64Reg dest, OpArg arg); //void PACKUSDW(X64Reg dest, OpArg arg); void PACKUSWB(X64Reg dest, OpArg arg); void PUNPCKLBW(X64Reg dest, const OpArg &arg); void PUNPCKLWD(X64Reg dest, const OpArg &arg); void PUNPCKLDQ(X64Reg dest, const OpArg &arg); void PSRAD(X64Reg dest, int shift); void PAND(X64Reg dest, OpArg arg); void PANDN(X64Reg dest, OpArg arg); void PXOR(X64Reg dest, OpArg arg); void POR(X64Reg dest, OpArg arg); void PADDB(X64Reg dest, OpArg arg); void PADDW(X64Reg dest, OpArg arg); void PADDD(X64Reg dest, OpArg arg); void PADDQ(X64Reg dest, OpArg arg); void PADDSB(X64Reg dest, OpArg arg); void PADDSW(X64Reg dest, OpArg arg); void PADDUSB(X64Reg dest, OpArg arg); void PADDUSW(X64Reg dest, OpArg arg); void PSUBB(X64Reg dest, OpArg arg); void PSUBW(X64Reg dest, OpArg arg); void PSUBD(X64Reg dest, OpArg arg); void PSUBQ(X64Reg dest, OpArg arg); void PSUBSB(X64Reg dest, OpArg arg); void PSUBSW(X64Reg dest, OpArg arg); void PSUBUSB(X64Reg dest, OpArg arg); void PSUBUSW(X64Reg dest, OpArg arg); void PAVGB(X64Reg dest, OpArg arg); void PAVGW(X64Reg dest, OpArg arg); void PCMPEQB(X64Reg dest, OpArg arg); void PCMPEQW(X64Reg dest, OpArg arg); void PCMPEQD(X64Reg dest, OpArg arg); void PCMPGTB(X64Reg dest, OpArg arg); void PCMPGTW(X64Reg dest, OpArg arg); void PCMPGTD(X64Reg dest, OpArg arg); void PEXTRW(X64Reg dest, OpArg arg, u8 subreg); void PINSRW(X64Reg dest, OpArg arg, u8 subreg); void PMADDWD(X64Reg dest, OpArg arg); void PSADBW(X64Reg dest, OpArg arg); void PMAXSW(X64Reg dest, OpArg arg); void PMAXUB(X64Reg dest, OpArg arg); void PMINSW(X64Reg dest, OpArg arg); void PMINUB(X64Reg dest, OpArg arg); void PMOVMSKB(X64Reg dest, OpArg arg); void PSHUFB(X64Reg dest, OpArg arg); namespace Util { // Sets up a __cdecl function. // Only x64 really needs the parameter. void EmitPrologue(int maxCallParams); void EmitEpilogue(int maxCallParams); } void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2); void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3); void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4); void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5); #if defined(_M_IX86) || !defined(_WIN32) #define CallCdeclFunction3_I(a,b,c,d) CallCdeclFunction3((void *)(a), (b), (c), (d)) #define CallCdeclFunction4_I(a,b,c,d,e) CallCdeclFunction4((void *)(a), (b), (c), (d), (e)) #define CallCdeclFunction5_I(a,b,c,d,e,f) CallCdeclFunction5((void *)(a), (b), (c), (d), (e), (f)) #define CallCdeclFunction6_I(a,b,c,d,e,f,g) CallCdeclFunction6((void *)(a), (b), (c), (d), (e), (f), (g)) #define DECLARE_IMPORT(x) #else // Comments from VertexLoader.cpp about these horrors: // This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit // address space that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we // want to grab the function pointers from the import table instead. void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2); void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3); void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4); void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5); #define CallCdeclFunction3_I(a,b,c,d) ___CallCdeclImport3(&__imp_##a,b,c,d) #define CallCdeclFunction4_I(a,b,c,d,e) ___CallCdeclImport4(&__imp_##a,b,c,d,e) #define CallCdeclFunction5_I(a,b,c,d,e,f) ___CallCdeclImport5(&__imp_##a,b,c,d,e,f) #define CallCdeclFunction6_I(a,b,c,d,e,f,g) ___CallCdeclImport6(&__imp_##a,b,c,d,e,f,g) #define DECLARE_IMPORT(x) extern "C" void *__imp_##x #endif } #endif